分析 (1)把a(bǔ)=1代入f(x),然后對(duì) f(x) 進(jìn)行求導(dǎo),令 f′(x)=0,可得極值點(diǎn),再與端點(diǎn)值進(jìn)行比較,就可得出f(x)的最小值.
(2)對(duì)函數(shù)求導(dǎo),令導(dǎo)函數(shù)為零,由只有一個(gè)可以確定兩個(gè)極值為同號(hào).
解答 解:(1)∵a=-2
∴f(x)=-2ln(x+2)-$\frac{1}{2}$x2+x
∴$f′(x)=\frac{-2}{x+2}-x+1$=$-\frac{{x}^{2}+x}{x+2}$
令f′(x)=0,x=0,x2=-1
f(x)有兩個(gè)極值f(0)=-2ln2,f(-1)=$-\frac{3}{2}$
f(x)兩個(gè)端點(diǎn)處的值為f(2)=-2ln4=-4ln2,f(-$\frac{3}{2}$)=2ln2-$\frac{21}{8}$
∴f(x)的最小值為-4ln2
(2)定義域?yàn)椋╝,+∞)
f′(x)=$\frac{a}{x-a}-x+1$
=$-\frac{{x}^{2}-(a+1)x}{x-a}$
=$-\frac{x(x-a-1)}{x-a}$
令f′(x)=0.則x1=0,x2=a+1
∵f(x)有且僅有一個(gè)零點(diǎn)
則f(x)的兩個(gè)極值均為正或負(fù)
f(0)=aln(-a)
f(a+1)=-$\frac{1}{2}$a2$+\frac{1}{2}$
∴f(0)-f(a+1)>0
即aln(-a)($-\frac{1}{2}{a}^{2}+\frac{1}{2}$)>0
即ln(-a)(a-1)(a+1)>0
∴$\left\{\begin{array}{l}{ln(-a)>0}\\{(a-1)(a+1)>0}\end{array}\right.$ 或$\left\{\begin{array}{l}{ln(-a)<0}\\{(a-1)(a+1)<0}\end{array}\right.$
由此得a<-1或-1<a<0
∴a的范圍是a<-1或-1<a<0
點(diǎn)評(píng) 本題主要考察了對(duì)導(dǎo)數(shù)的求解和對(duì)只有一個(gè)零點(diǎn)的理解,屬于經(jīng)常接觸的題目,可以記住此類型的對(duì)應(yīng)結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰直角三角形 | C. | 等腰三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com