分析 根據(jù)條件$f′(x)-\frac{1}{3}<0$,從而得出函數(shù)$F(x)=f(x)-\frac{x+2}{3}$在R上為減函數(shù),并可得出F(1)=0,這樣根據(jù)不等式$f(lgx)>\frac{lgx+2}{3}$即可得到F(lgx)>F(1),從而根據(jù)F(x)和對(duì)數(shù)函數(shù)的單調(diào)性即可得出不等式F(lgx)>F(1)的解集,即得出原不等式的解集.
解答 解:∵f′(x)<$\frac{1}{3}$;
∴$f′(x)-\frac{1}{3}<0$;
∴$f(x)-\frac{x+2}{3}$在R上為減函數(shù);
設(shè)$F(x)=f(x)-\frac{x+2}{3}$,則F(x)在R上為減函數(shù);
∵f(1)=1;
∴F(1)=f(1)-1=1-1=0;
由$f(lgx)>\frac{lgx+2}{3}$得,$f(lgx)-\frac{lgx+2}{3}>0$;
∴F(lgx)>F(1);
∵F(x)在R上單調(diào)遞減;
∴l(xiāng)gx<1;
∴0<x<10;
∴原不等式的解集為(0,10).
故答案為:(0,10).
點(diǎn)評(píng) 考查函數(shù)導(dǎo)數(shù)符號(hào)和函數(shù)單調(diào)性的關(guān)系,以及構(gòu)造函數(shù)解決問題的方法,以及根據(jù)函數(shù)單調(diào)性解不等式的方法,對(duì)數(shù)函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 68 | B. | 289 | C. | 169 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com