6.過拋物線x2=2py(p>0)的焦點(diǎn)F作傾斜角為45°的直線,與拋物線分別交于A、B兩點(diǎn)(A在y軸左側(cè)),則$\frac{{|{AF}|}}{{|{FB}|}}$=$3-2\sqrt{2}$.

分析 點(diǎn)斜式設(shè)出直線l的方程,代入拋物線方程,求出A,B兩點(diǎn)的縱坐標(biāo),利用拋物線的定義得出$\frac{{|{AF}|}}{{|{FB}|}}$=$\frac{{y}_{1}+\frac{p}{2}}{{y}_{2}+\frac{p}{2}}$,即可得出結(jié)論.

解答 解:設(shè)直線l的方程為:x=y-$\frac{p}{2}$,A(x1,y1),B(x2,y2),
由x=y-$\frac{p}{2}$,代入x2=2py,可得y2-3py+$\frac{1}{4}$p2=0,
∴y1=$\frac{3-2\sqrt{2}}{2}$p,y2=$\frac{3+2\sqrt{2}}{2}$p,
從而,$\frac{{|{AF}|}}{{|{FB}|}}$=$\frac{{y}_{1}+\frac{p}{2}}{{y}_{2}+\frac{p}{2}}$=$3-2\sqrt{2}$.
故答案為:$3-2\sqrt{2}$.

點(diǎn)評 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義,得出$\frac{{|{AF}|}}{{|{FB}|}}$=$\frac{{y}_{1}+\frac{p}{2}}{{y}_{2}+\frac{p}{2}}$是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=lncosx(-$\frac{π}{2}$<x<$\frac{π}{2}$)的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,AB=2,AC=3,$BC=\sqrt{10}$,則△ABC的面積為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\sqrt{15}$C.$\frac{{3\sqrt{15}}}{4}$D.$\frac{{3\sqrt{6}}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,b=3,c=4,B=30°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\vec a,\vec b$是夾角為60°的兩單位向量,向量$\vec c⊥\vec a,\vec c⊥\vec b$,且$|\vec c|=1$,$\vec x=2\vec a-\vec b+\vec c,\vec y=-\vec a+3\vec b-\vec c$,則$cos<\vec x,\vec y>$=$-\frac{{5\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.則( 。
A.$f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$B.f(0.76)<f(60.5)<f(log0.76)
C.$f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$D.$f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\sqrt{{x^2}-2x-8}$的定義域?yàn)锳,函數(shù)$g(x)=\frac{1}{{\sqrt{1-|{x-a}|}}}$的定義域?yàn)锽,則使A∩B=∅的實(shí)數(shù)a的取值范圍是(  )
A.{a|-1<a<3}B.{a|-2<a<4}C.{a|-2≤a≤4}D.{a|-1≤a≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知關(guān)于x的方程x2+ax+2b+1=0的兩個實(shí)根分別為x1、x2,且-1<x1<1<x2<2,則$\frac{b-1}{a-1}$的取值范圍是($\frac{1}{8}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$,$\overrightarrow{CF}$=$\frac{2}{3}$$\overrightarrow{CD}$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{EF}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=4,∠DAB=60°,分別求|$\overrightarrow{EF}$|和$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

同步練習(xí)冊答案