15.已知關(guān)于x的方程x2+ax+2b+1=0的兩個(gè)實(shí)根分別為x1、x2,且-1<x1<1<x2<2,則$\frac{b-1}{a-1}$的取值范圍是($\frac{1}{8}$,2).

分析 令f(x)=x2+ax+2b+1,則$\left\{\begin{array}{l}f(-1)>0\\ f(1)<0\\ f(2)>0\end{array}\right.$畫出滿足約束條件的可行域,分析$\frac{b-1}{a-1}$的幾何意義,數(shù)形結(jié)合,可得答案.

解答 解:令f(x)=x2+ax+2b+1,
∵關(guān)于x的方程x2+ax+2b+1=0的兩個(gè)實(shí)根分別為x1、x2,且-1<x1<1<x2<2,
則$\left\{\begin{array}{l}f(-1)>0\\ f(1)<0\\ f(2)>0\end{array}\right.$,即$\left\{\begin{array}{l}-a+2b+2>0\\ a+2b+2<0\\ 2a+2b+5>0\end{array}\right.$,
滿足約束條件的可行域如下圖所示:

$\frac{b-1}{a-1}$表示可行域內(nèi)動(dòng)點(diǎn)(x,y)與P(1,1)點(diǎn)連線的斜率,
由PA=2,PB=$\frac{1}{8}$得:$\frac{b-1}{a-1}$的取值范圍是($\frac{1}{8}$,2),
故答案為:($\frac{1}{8}$,2)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是充要條件,一元二次方程根的分布與系數(shù)的關(guān)系,線性規(guī)劃,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,正方體的棱長(zhǎng)為1,C B′∩BC′=O,求:
(1)AO與A′C′所成角的度數(shù);
(2)AO與平面ABCD所成角的正切值;
(3)證明平面AOB與平面AOC垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.過(guò)拋物線x2=2py(p>0)的焦點(diǎn)F作傾斜角為45°的直線,與拋物線分別交于A、B兩點(diǎn)(A在y軸左側(cè)),則$\frac{{|{AF}|}}{{|{FB}|}}$=$3-2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)O為△ABC內(nèi)任一點(diǎn),且滿足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=0.
(1)若D,E分別是BC,CA的中點(diǎn),求證:D,E,O共線;
(2)求△ABC與△AOC的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x|2a-x|-a,a∈R.
(1)若a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知a>-1,討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.積分${∫}_{3}^{4}$lnxdx和${∫}_{3}^{4}$ln2xdx的大小關(guān)系是${∫}_{3}^{4}$lnxdx<${∫}_{3}^{4}$ln2xdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$都是單位向量,且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow{c}$,則$\overrightarrow{a}$•$\overrightarrow{c}$=$\frac{1}{2}$.設(shè)$\overrightarrow{a}$與$\overrightarrow$夾角為θ,則θ=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.集合A={x||x-1|<1},B={x|$\frac{2}{x-1}$≥1},C={x|2x2+mx-1<0},若“x∈A∩B”是“x∈C”的充分不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知條件p:x≤1,條件q:$\frac{1}{x}$<1,則¬q是p的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案