18.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及取得最大值時(shí)x的取值集合.

分析 (1)由向量和和差角的三角函數(shù)公式化簡(jiǎn)可得f(x)=1+2sin(2x+$\frac{π}{6}$),由周期公式可得;
(2)當(dāng)2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$時(shí),f(x)取最大值,可得此時(shí)x的取值集合.

解答 解:(1)∵$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(cosx,$\sqrt{3}$sin2x),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$=2cos2x+$\sqrt{3}$sin2x=1+cos2x+$\sqrt{3}$sin2x
=1+2sin(2x+$\frac{π}{6}$),∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(2)當(dāng)2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$時(shí),f(x)取最大值,
解得x=kπ+$\frac{π}{6}$,k∈Z,故此時(shí)x的取值集合為{x|x=kπ+$\frac{π}{6}$,k∈Z}.

點(diǎn)評(píng) 本題考查三角函數(shù)的周期性和最值,涉及向量的數(shù)量積,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+$\sqrt{2}$-1,x∈R.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
①求f(x)的最小正周期和單調(diào)區(qū)間;
②用五點(diǎn)法作出其簡(jiǎn)圖;
③求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|x<3,x∈N},B={(a,b)|a+b=2,a,b∈A},試用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.給出如下說(shuō)法:
①命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”
②若命題p:?x∈R,x2+x+1=0,則¬p:?x∈R,x2+x+1≠0
③若p∧q為假命題,則p,q均為假命題
④“x>2”是“x2-3x+2>0”的充分不必要條件
其中正確命題的序號(hào)有①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=$\frac{3}{{2}^{x}-1}$+k是奇函數(shù),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)若6x=24y=12,求$\frac{1}{x}$+$\frac{1}{y}$的值;
(2)解方程:1og2(2x+8)=x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某高三年級(jí)從甲(文)乙(理)兩個(gè)年級(jí)組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)(滿分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績(jī)的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.定義在(0,+∞)上的函數(shù)f(x)滿足:f(x)>xf′(x),且f(2)=4,則不等式f(x)-2x>0的解集為( 。
A.(2,+∞)B.(0,2)C.(0,4)D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案