6.已知集合A={x|x<3,x∈N},B={(a,b)|a+b=2,a,b∈A},試用列舉法表示集合B.

分析 先化簡(jiǎn)集合A,再根據(jù)a+b=2,以及a,b∈A,列舉即可.

解答 解:集合A={x|x<3,x∈N}={0,1,2},
因?yàn)锽={(a,b)|a+b=2,a,b∈A},
則B={(0,2),(2,0),(1,1)}.

點(diǎn)評(píng) 本題考查列舉法、描述法表示集合的概念,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}的前n項(xiàng)為Sn,若公差d=-2,S3=21,則當(dāng)Sn取得最大值時(shí),n的值為( 。
A.10B.9C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,F(xiàn)1,F(xiàn)2是其兩個(gè)焦點(diǎn),點(diǎn)M、N在雙曲線上.
(1)若M、N的中點(diǎn)為(2,$\frac{9}{2}$),求直線MN的方程.
(2)若∠F1MF2=60°時(shí).求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)M在線段AB上,且$\frac{AM}{MB}$=$\frac{7}{3}$,則BM=$\frac{3}{10}$AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{5}{4}$,且雙曲線C的焦點(diǎn)到它的一條漸近線的距離為3,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|ax2+x+1=0}中至少有一個(gè)元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及取得最大值時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e=2.718…為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)).該食品在0℃的保鮮時(shí)間是192小時(shí),在16℃的保鮮時(shí)間是12小時(shí),若要使該食品的保鮮時(shí)間至少是96小時(shí),則儲(chǔ)存溫度x最大不能高于4℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:?x∈(0,$\frac{π}{2}$),使得cosx≥x,則該命題的否定是(  )
A.?x∈(0,$\frac{π}{2}$),使得cos x>xB.?x∈(0,$\frac{π}{2}$),使得cos x≥x
C.?x∈(0,$\frac{π}{2}$),使得cos x<xD.?x∈(0,$\frac{π}{2}$),使得cos x<x

查看答案和解析>>

同步練習(xí)冊(cè)答案