8.已知a,b∈R,且ab≠0,那么“a>b”是“l(fā)g(a-b)>0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 寫出“l(fā)g(a-b)>0”的等價(jià)命題,結(jié)合充要條件的定義,可得答案.

解答 解:“l(fā)g(a-b)>0”?“a-b>1”?“a>b+1”,
當(dāng)“a>b”時(shí),“a>b+1”不一定成立,
故“a>b”是“l(fā)g(a-b)>0”的不充分條件;
當(dāng)“a>b+1”時(shí),“a>b”一定成立,
故“a>b”是“l(fā)g(a-b)>0”的必要條件;
故“a>b”是“l(fā)g(a-b)>0”的必要不充分條件;
故選:B.

點(diǎn)評 本題考查的知識(shí)點(diǎn)是充要條件,熟練掌握充要條件的概念,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知θ的終邊過點(diǎn)P(-12,5),則cosθ=$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.點(diǎn)A(1,1)在直線l:mx+ny=1上,則mn的最大值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)g(x)與f(x)=ax(a>0,a≠1)的圖象關(guān)于直線y=x對稱,則g(2)+g($\frac{1}{2}$)的值為( 。
A.4B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“x=2”是“(x-2)•(x+5)=0”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.與向量$\overrightarrow{a}$=(3,4)共線反向的單位向量$\overrightarrow{e}$=(  )
A.(-$\frac{3}{5}$,-$\frac{4}{5}$)B.(-$\frac{4}{5}$,$\frac{3}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$),($\frac{3}{5}$,$\frac{4}{5}$)D.($±\frac{3}{5}$,$±\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=$\frac{{S}_{2}}{_{2}}$.
(1)求an與bn;
(2)若對于?n∈N*,不等式$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)x1,x2∈R,現(xiàn)定義運(yùn)算“?”:x1?x2=(x1+x22-(x1-x22,若x≥0,則動(dòng)點(diǎn)P(x,$\sqrt{x?2}$)的軌跡是( 。
A.橢圓的一部分B.雙曲線的一部分C.拋物線的一部分D.圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=1,a2=3,an+2=3an+1-2an(n∈N*).
(1)證明:數(shù)列{an+1-an}是等比數(shù)列;
(2)設(shè)bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案