設(shè)倒圓錐形容器的軸截面為一個等邊三角形,在此容器內(nèi)注入水,并浸入半徑為r的一個實心球,使球與水面恰好相切,試求取出球后水面高為多少?
考點:組合幾何體的面積、體積問題
專題:計算題,空間位置關(guān)系與距離
分析:由題意求出球的體積,求出圓錐的體積,設(shè)出水的高度,求出水的圓錐的體積,利用V+V=V容器,求出圓錐內(nèi)水平面高.
解答: 解:如圖.在容器內(nèi)注入水,并放入一個半徑為r的鐵球,這時水面記為AB,
將球從圓錐內(nèi)取出后,這時水面記為EF.
三角形PAB為軸截面,是正三角形,
三角形PEF也是正三角形,圓O是正三角形PAB的內(nèi)切圓.
由題意可知,DO=CO=r,AO=2r=OP,AC=
3
r
∴V=
4
3
πr3
,VPC=
1
3
π(
3
r)2•3r
=3πr3
又設(shè)HP=h,則EH=
3
3
h
∴V=
1
3
π(
3
3
h)2h
=
π
9
h3

∵V+V=VPC
π
9
h3
+
4
3
πr3
=3πr3
∴h=
315
r

即圓錐內(nèi)的水深是
315
r
點評:本小題主要考查球的體積和表面積、旋轉(zhuǎn)體(圓柱、圓錐、圓臺)等基礎(chǔ)知識,考查運算求解能力,考查轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)如果λ
a
b
(λ≠0),那么
a
=
b
;
(2)若
a0
為單位向量,
a
a0
平行,則
a
=|
a
|•
a0
;
(3)設(shè)
a
1
e1
2
e2
(λ1,λ2∈R),則當
e1
e2
共線時,
a
e1
也共線,
其中真命題的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(
π
2
,π),tanα-cotα=
3
2
,
(1)求tanα,sinα的值;
(2)求tan
α
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高考理科總分得640就能上北京大學,已知一名理科學生的語文、英語、理綜合得分分別為135分,125分,260分.數(shù)學試卷中12個選擇題每題5分,且每題答對的概率都是0.9,4個填空題每題4分且每題答對的概率都是0.8,6個大題前五個每題12分,最后一題14分,前兩個大題估計能得滿分,最后一個大題估計能得2分.已知第三、四、五個大題每題答對的概率都相等,且至少答對一題的概率為0.992.
(1)求這名理科學生數(shù)學試卷得分的期望;
(2)這名學生能否考上北京大學?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個袋中裝有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率為
2
5
;從袋中任意摸出2個球,至少得到1個白球的概率為
7
9

(Ⅰ)若袋中共有10個球;
(1)求白球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求ξ的數(shù)學期望E(ξ).
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于
7
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的定義域為R,若存在常數(shù)M>0,使得|f(x)|≥M|x|對一切實數(shù)x均成立,則稱f(x)為“圓錐托底型”函數(shù).
(1)判斷函數(shù)f(x)=2x,g(x)=x3是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若f(x)=x2+1是“圓錐托底型”函數(shù),求出M的最大值.
(3)問實數(shù)k、b滿足什么條件,f(x)=kx+b是“圓錐托底型”函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,若S17為一確定常數(shù),則當n為何值時,可以使4a2-3a9+an也為確定常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)現(xiàn)有甲、乙兩個項目,對甲項目投資十萬元,一年可進行四次獨立重復的投資(即甲項目的投資周期為3個月)每次成功的概率均為
1
4
,若成功一次,可得利潤1萬元,若失敗,則利潤為0,投資要么成功,要么失。阎翼椖康睦麧櫯c產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是p(0<p<1),記乙項目產(chǎn)品價格在一年內(nèi)進行兩次獨立的調(diào)整,設(shè)乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為ξ,對乙項目每投資十萬元,ξ取0、1、2時,一年后相應(yīng)利潤是1.4萬元、1.1萬元、0.4萬元,隨機變量ξ1、ξ2分別表示對甲、乙兩項目各投資十萬元一年后的利潤.
(Ⅰ)求ξ1、ξ2的概率分布列和數(shù)學期望E(ξ1)、E(ξ2);
(Ⅱ)當E(ξ1)<E(ξ2)時,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={y|y=x2+4x-1},N={x|y2+2x=3},求M∩N.

查看答案和解析>>

同步練習冊答案