17.將邊長為1正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論:(1)AC⊥BD;(2)△ACD是等邊三角形;(3)四面體A-BCD的表面積為$1+\frac{{\sqrt{3}}}{2}$.則正確結論的序號為(1)(2)(3).

分析 作出此直二面角的圖形,由圖形中所給的位置關系,對題目中的命題進行判斷,即可得出正確的結論.

解答 解:根據(jù)題意,畫出圖形,如圖所示:

二面角A-BD-C為90°,E是BD的中點,可以得出∠AEC=90°,為直二面角的平面角;
對于(1),由于BD⊥面AEC,得出AC⊥BD,命題(1)正確;
對于(2),在等腰直角三角形AEC中,可以求出AC=$\sqrt{2}$AE=AD=CD,
所以△ACD是等邊三角形,命題(2)正確;
對于(3),四面體ABCD的表面積為
S=2S△ACD+2S△ABD=2×$\frac{1}{2}$×12×sin60°+2×$\frac{1}{2}$×1×1=$\frac{\sqrt{3}}{2}$+1,
命題(3)正確;
綜上,正確的命題是(1)(2)(3).
故答案為:(1)(2)(3).

點評 本題考查了與二面角有關的線線之間、線面之間角的求法問題,是綜合性問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,設P是上半橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(y≥0)上任意一點,F(xiàn)為右焦點,PF的最小值是$\sqrt{2}$-1,離心率是$\frac{\sqrt{2}}{2}$,上半橢圓C與x軸交于點A1,A2
(1)求出a2,b2的值;
(2)設P是上半橢圓C上位于第一象限內(nèi)的任意一點,過A2作A2R⊥A1P于R,設A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某樂園按時段收費,收費標準為:每玩一次不超過1小時收費10元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人參與但都不超過4小時,甲、乙二人在每個時段離場是等可能的.為吸引顧客,每個顧客可以參加一次抽獎活動.
(1)用(10,10)表示甲乙玩都不超過1小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,則實數(shù)a的范圍是( 。
A.[3,+∞)B.(3,+∞)C.[-∞,3]D.[-∞,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2|x-2|+ax(x∈R).
(1)當a=1時,求f(x)的最小值;
(2)當f(x)有最小值時,求a的取值范圍;
(3)若函數(shù)h(x)=f(sinx)-2存在零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知$sin(-\frac{3}{2}π+θ)=\frac{1}{5}$,則cosθ=( 。
A.$\frac{1}{5}$B.$-\frac{1}{5}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$cos(\frac{π}{4}+θ)=\frac{2}{3}\sqrt{2}$,則sin2θ=( 。
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$-\frac{8}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.橢圓C1與C2的中心在原點,焦點分別在x軸與y軸上,它們有相同的離心率$e=\frac{{\sqrt{2}}}{2}$,并且C2的短軸為C1的長軸,C1與C2的四個焦點構成的四邊形面積是$2\sqrt{2}$.
(Ⅰ)求橢圓C1與C2的方程;
(Ⅱ)設P是橢圓C2上非頂點的動點,P與橢圓C1長軸兩個頂點A,B的連線PA,PB分別與橢圓C1交于點E,F(xiàn).
(1)求證:直線PA,PB斜率之積為常數(shù);
(2)直線AF與直線BE的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.等比數(shù)列{an}中,S2=2,S4=8,則S6=(  )
A.-32B.32C.-26D.26

查看答案和解析>>

同步練習冊答案