將25個(gè)數(shù)排成如圖所示的正方形:
已知第一行a11,a12,a13,a14,a15成等差數(shù)列,而每一列a1j,a2j,a3j,a4j,a5j(1≤j≤5)都成等比數(shù)列,且五個(gè)公比全相等.若a24=4,a41=-2,a43=10,則a11×a55的值為
 
考點(diǎn):歸納推理
專題:推理和證明
分析:根據(jù)題意設(shè)第一行等差數(shù)列的公差為d,設(shè)公比為q,由題意列出等式,構(gòu)造方程組解得即可.
解答: 解:設(shè)第一行等差數(shù)列的公差為d,
則a13=a11+2d,a14=a11+3d,a15=a11+4d
又每一列成等比,五個(gè)公比全相等,設(shè)為q,而a24=4,a41=-2,a43=10
則a41=a11×q3=-2;---(1)
a24=a14×q=(a11+3d)×q=4;---(2)
a43=a13×q3=(a11+2d)×q3=10;---(3)
a55=a15×q4=(a11+4d)×q4.--(4)
由(1)、(3)得-5a11=a11+2d,即d=-3a11,代入(2)得-8a11q=4,---(5)
(1)、(5)得q=2,a11=-
1
4
,d=
3
4
或q=-2,a11=
1
4
,d=-
3
4

所以a11×a55=a11×(a11+4d)×q4=-11,
故答案為:-11.
點(diǎn)評(píng):本題主要考查了歸納推理的問(wèn)題,以及等差等比數(shù)列的問(wèn)題,關(guān)鍵是求出公差和公比,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從4名男同學(xué)中選出2人,5名女同學(xué)中選出3人,并將選出的5人排成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)對(duì)稱;
②函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
③函數(shù)y=cos2x+sinx的最小值為-1;
④設(shè)θ為第二象限的角,則tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2
;
⑤若θ為第三象限的角,則點(diǎn)P(sin(cosθ),cos(cosθ))在第二象限.
其中正確的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式-
1
2
x2+ax>-1的解集為{x|-1<x<2},則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果三棱錐A-BCD的底面BCD是正三角形,頂點(diǎn)A在底面BCD上的射影是△BCD的中心,則這樣的三棱錐稱為正三棱錐.給出下列結(jié)論:
①正三棱錐所有棱長(zhǎng)都相等;
②正三棱錐至少有一組對(duì)棱(如棱AB與CD)不垂直;
③當(dāng)正三棱錐所有棱長(zhǎng)都相等時(shí),該棱錐內(nèi)任意一點(diǎn)到它的四個(gè)面的距離之和為定值;
④若正三棱錐所有棱長(zhǎng)均為2
2
,則該棱錐外接球的表面積等于12π.
⑤若正三棱錐A-BCD的側(cè)棱長(zhǎng)均為2,一個(gè)側(cè)面的頂角為40°,過(guò)點(diǎn)B的平面分別交側(cè)棱AC,AD于M,N.則△BMN周長(zhǎng)的最小值等于2
3

以上結(jié)論正確的是
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l:
x=1+t
y=1+k•t
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,圓C:ρ=2cosθ+4sinθ,則直線l與圓C相交最短弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a2-b2=
2
bc,sinC=2
2
sinB,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(
π
2
,π),sinα=
3
5
,則sin(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α為三角形的一個(gè)內(nèi)角,tanα=-
5
12
,則cosα=( 。
A、-
12
13
B、-
5
13
C、
3
2
D、
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案