10.在平面直角坐標(biāo)系xOy中,已知直線l的方程為y=2x+b,圓C的方程為(x+2)2+(y-1)2=16.
(1)若直線l與圓C相切,求b的值;
(2)若直線l與圓C有兩個(gè)交點(diǎn)A,B,以A,B與圓心C為頂點(diǎn)的三角形的面積最大時(shí),求b的值.

分析 (1)由直線l與圓C相切知$\frac{|2×(-2)-1+b|}{\sqrt{4+1}}$=4,從而解得;
(2)由(1)知圓心C到AB的距離等于$\frac{|b-5|}{\sqrt{5}}$,由勾股定理可求得|AB|=2$\sqrt{16-(\frac{|b-5|}{\sqrt{5}})^{2}}$;從而表示出S△ABC=$\frac{1}{2}$×2$\sqrt{16-(\frac{|b-5|}{\sqrt{5}})^{2}}$×$\frac{|b-5|}{\sqrt{5}}$=$\sqrt{-[(b-5)^{2}-40]^{2}+1600}$,從而求最值及最值點(diǎn).

解答 解:(1)因?yàn)橹本l與圓C相切,
所以$\frac{|2×(-2)-1+b|}{\sqrt{4+1}}$=4,
解得:b=5±4$\sqrt{5}$.
所以,b的值為5±4$\sqrt{5}$.
(2)由(1)知圓心C到AB的距離等于$\frac{|b-5|}{\sqrt{5}}$,
由勾股定理可求得:|AB|=2$\sqrt{16-(\frac{|b-5|}{\sqrt{5}})^{2}}$;
所以,S△ABC=$\frac{1}{2}$×2$\sqrt{16-(\frac{|b-5|}{\sqrt{5}})^{2}}$×$\frac{|b-5|}{\sqrt{5}}$=$\frac{1}{5}$$\sqrt{-[(b-5)^{2}-40]^{2}+1600}$,
所以,當(dāng)(b-5)2-40=0時(shí),S△ABC取得最大值8,此時(shí),b=5±2$\sqrt{10}$.
結(jié)合(1)及5±2$\sqrt{10}$∈(5-4$\sqrt{5}$,5+4$\sqrt{5}$),
所以,b=5±2$\sqrt{10}$符合題意.

點(diǎn)評(píng) 本題考查了直線與圓的位置關(guān)系及其應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.隨著有車(chē)族人數(shù)的增加,越來(lái)越多的人都在關(guān)注汽油價(jià)格的信息,某機(jī)構(gòu)調(diào)查市民獲取有關(guān)汽車(chē)價(jià)格的信息渠道得到如下數(shù)據(jù),按照信息來(lái)里利用分成抽樣的方法抽取50人,其中獲取信息的渠道為看電視的有27人.
獲取消息渠道看電視收聽(tīng)廣播其它渠道
男性480m180
女性38421090
(Ⅰ)求m的值;
(Ⅱ)從“其它渠道”中按性別比例抽取一個(gè)容量為6的樣本,再?gòu)倪@6人中抽取3人,求抽取的3人中至少1人是女性的概率;
(Ⅲ)現(xiàn)從(Ⅱ)中確定的樣本中每次都抽取1人,直到抽出所有女性為止,設(shè)所要抽取的人為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2}&{(x≤0)}\\{lo{g}_{\frac{1}{2}}(x+1)}&{(x>0)}\end{array}\right.$,若f(f(a))≤2,則實(shí)數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知一個(gè)正三棱柱的底面邊長(zhǎng)為a,高為h,試設(shè)計(jì)一個(gè)程序來(lái)求解這個(gè)正三棱柱的表面積和體積,并畫(huà)出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐S-ABCD中,底面ABCD為矩形,SD⊥平面ABCD,AB=SD=2,BC=2$\sqrt{2}$點(diǎn)M為BC的中點(diǎn)
(1)證明;AC⊥平面SDM;
(2)求二面角B-SM-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ax3+bx+2,在X=2處取得極值-14.
(1)求a,b的值;
(2)若f(x)≥kx在(0,2]上恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的左、右焦點(diǎn)分別為F1、F2,其半焦距為C,圓M的方程為(x-$\frac{5c}{3}$)2+y2=$\frac{16}{9}$c2
(1)若P是圓M上的任意一點(diǎn),求證:$\frac{P{F}_{1}}{P{F}_{2}}$是定值;
(2)若橢圓經(jīng)過(guò)圓上一點(diǎn)Q,且cos∠F1QF2=$\frac{11}{16}$,求橢圓的離心率;
(3)在(2)的條件下,若|OQ|=$\frac{\sqrt{31}}{3}$(O為坐標(biāo)原點(diǎn)),求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.博彩公司對(duì)2015年NBA總決賽做了大膽的預(yù)測(cè)和分析,預(yù)測(cè)西部冠軍是老辣的馬刺隊(duì),東部冠軍是擁有詹姆斯的年輕的騎士隊(duì),總決賽采取7場(chǎng)4勝制,每場(chǎng)必須分出勝負(fù),場(chǎng)與場(chǎng)之間的結(jié)果互不影響,只要有一隊(duì)獲勝4場(chǎng)就結(jié)束比賽.前4場(chǎng),馬刺隊(duì)勝利的概率為$\frac{1}{2}$,第5,6場(chǎng)馬刺隊(duì)因?yàn)槠骄挲g大,體能下降厲害,所以勝利的概率將為$\frac{2}{5}$,第7場(chǎng),馬刺隊(duì)因?yàn)橛卸啻未虻谄邎?chǎng)的經(jīng)驗(yàn),所以勝利的概率為$\frac{3}{5}$.
(1)分別求出馬刺隊(duì)以4:0,4:1,4:2,4:3勝利的概率及總決賽馬刺隊(duì)獲得冠軍的概率;
(2)隨機(jī)變量X為分出總冠軍時(shí)比賽的場(chǎng)數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知平面α⊥β,且α∩β=l,在l上有兩點(diǎn)A,B,線段AC?α,線段BD?β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,則線段CD的長(zhǎng)為13.

查看答案和解析>>

同步練習(xí)冊(cè)答案