17.一個等比數(shù)列的首項為1,公比為2,則a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+a${\;}_{3}^{2}$+…+a${\;}_{n}^{2}$=$\frac{1}{3}$(4n-1).

分析 化簡可得a${\;}_{n}^{2}$=(2n-12=4n-1,從而求等比數(shù)列的前n項和.

解答 解:∵an=a1•qn-1=2n-1,
∴a${\;}_{n}^{2}$=(2n-12=4n-1,
∴a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+a${\;}_{3}^{2}$+…+a${\;}_{n}^{2}$
=$\frac{1(1-{4}^{n})}{1-4}$=$\frac{1}{3}$(4n-1),
故答案為:$\frac{1}{3}$(4n-1).

點評 本題考查了等比數(shù)列的通項公式及前n項和公式的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.是否存在常數(shù)a和α,使得sinnα+cosnα=a對任意的正整數(shù)n都成立?若存在,求出a和α的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,1),若($\overrightarrow{a}$+$λ\overrightarrow$)⊥$\overrightarrow$,則λ等于(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(x)=3x-4,g(x-1)=f(x),則g(x)=( 。
A.3x-3B.3x-5C.3x-1D.3x+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知sinα+cosα=$\frac{4}{3}$,則cos2($\frac{π}{4}$+α)=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知三棱錐P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,AB=2$\sqrt{3}$,AC=2,則三棱錐P-ABC的體積為$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在等比數(shù)列{an}中,a5+a6=2,a15+a16=3,則a25+a26的值是(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.$\frac{9}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法正確的是( 。
A.sin($\frac{π}{3}$)<0B.cos(-80°)<0C.tan200°>0D.cos0°=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在區(qū)間[0,3]上隨機地取一個數(shù)x,則事件“-1≤log${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”發(fā)生的概率為$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案