分析 (I)由等差數(shù)列的性質(zhì),利用“倒序相加”即可得出;
(II)$\frac{S_n}{n}=\frac{{{a_1}+{a_n}}}{2}$,利用遞推關(guān)系、等差數(shù)列的定義即可證明.
解答 (Ⅰ)解:Sn=a1+a2+a3+…+anSn=a1+(a1+d)+(a1+2d)+…+[a1+(n-1)d]①,
Sn=an+(an-d)+(an-2d)+…+[an-(n-1)d]②
①+②得$2{S_n}=\overbrace{({{a_1}+{a_n}})+({{a_1}+{a_n}})+…+({{a_1}+{a_n}})}^{n個(gè)}=n({{a_1}+{a_n}})$,
∴${S_n}=\frac{{n({{a_1}+{a_n}})}}{2}$.
(II)證明:∵$\frac{S_n}{n}=\frac{{{a_1}+{a_n}}}{2}$,
當(dāng)n=1時(shí),$\frac{S_1}{1}=\frac{{{a_1}+{a_1}}}{2}={a_1}$,
當(dāng)n≥2時(shí),$\frac{S_n}{n}-\frac{{{S_{n-1}}}}{n-1}=\frac{{{a_1}+{a_n}}}{2}-\frac{{{a_1}+{a_{n-1}}}}{2}=\frac{{{a_n}-{a_{n-1}}}}{2}=\frace0askuc{2}$,
∴數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是以a1為首項(xiàng),$\fracakuoaai{2}$為公差的等差數(shù)列.
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)、“倒序相加”、遞推關(guān)系、等差數(shù)列的定義,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有最小值12 | B. | 有最大值12 | C. | 有最小值4 | D. | 有最大值4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 0或1 | D. | 0或1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x | B. | y=x2-2x | C. | y=cosx | D. | y=2|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com