15.已知f(x)=log2(4-ax)在區(qū)間[-1,3]上是增函數(shù),則a的取值范圍是-4<a<0.

分析 若f(x)=log2(4-ax)在區(qū)間[-1,3]上是增函數(shù),則內(nèi)函數(shù)t=4-ax在區(qū)間[-1,3]上是增函數(shù),且恒為正,進(jìn)而得到答案.

解答 解:∵f(x)=log2(4-ax)在區(qū)間[-1,3]上是增函數(shù),
故內(nèi)函數(shù)t=4-ax在區(qū)間[-1,3]上是增函數(shù),且恒為正,
故$\left\{\begin{array}{l}-a>0\\ 4+a>0\end{array}\right.$,
解得:-4<a<0,
故答案為:-4<a<0.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),熟練掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)數(shù)列{an}是公差為d的等差數(shù)列.
(Ⅰ)推導(dǎo){an}的前n項(xiàng)和Sn公式;
(Ⅱ)證明數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,且滿足a1+a5=10,S4=16;數(shù)列{bn}滿足:b1+3b2+32b3+..
.+3n-1bn=$\frac{n}{3}$,(n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=({\sqrt{3}sinωx-cosωx})•cosωx+\frac{1}{2}$(其中ω>0),若f(x)的一條對(duì)稱(chēng)軸離最近的對(duì)稱(chēng)中心的距離為$\frac{π}{4}$.
(I)求y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中角A、B、C的對(duì)邊分別是a,b,c滿足(2b-a)cosC=c•cosA,則f(B)恰是f(x)的最大值,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.等比數(shù)列{an}滿足a6=a2•a4,且a2為2a1與$\frac{1}{2}{a_3}$的等差中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{a_n}{{({{a_n}-1})({{a_{n+1}}-1})}}$,Tn為{bn}的前n項(xiàng)和,求使${T_n}>\frac{2015}{2016}$成立時(shí)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,半徑為R的圓形紙板上有一內(nèi)接正六邊形圖案,將一顆豆子隨機(jī)地扔到平放的紙板上,假設(shè)豆子不落在線上,則豆子落在正六邊形區(qū)域的概率是(  )
A.$\frac{3}{2π}$B.$\frac{3\sqrt{3}}{2π}$C.$\frac{3}{4π}$D.$\frac{3\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“m=1”是“直線(m-2)x-3my-1=0與直線(m+2)x+(m-2)y+3=0相互垂直”的(  )
A.必要而不充分條件B.充分而不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=-2$\sqrt{2}$.
(1)寫(xiě)出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案