6.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}+cosθ}\\{y=\frac{\sqrt{2}}{2}+sinθ}\end{array}\right.$(θ是參數(shù)),直線l的極坐標(biāo)方程為$θ=\frac{π}{12}$(ρ∈R)
(Ⅰ)求C的普通方程與極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|AB|的值.

分析 (Ⅰ)由sin2θ+cos2θ=1,可得圓C的普通方程,再由x=ρcosθ,y=ρsinθ,x2+y22,即可得到圓的極坐標(biāo)方程;
(Ⅱ)由于圓經(jīng)過原點(diǎn),由圓的極坐標(biāo)方程,代入$θ=\frac{π}{12}$,計(jì)算即可得到弦長.

解答 解:(Ⅰ)由sin2θ+cos2θ=1,可得
圓C的普通方程是(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1,
由x=ρcosθ,y=ρsinθ,x2+y22,
又x2+y2-$\sqrt{2}$x$-\sqrt{2}y$=0,即有ρ2=$\sqrt{2}$ρ(cosθ+sinθ),
即有圓的極坐標(biāo)方程是ρ=2cos(θ-$\frac{π}{4}$);          
(Ⅱ)由圓的極坐標(biāo)方程可得,
當(dāng)$θ=\frac{π}{12}$時(shí),
ρ=2cos($\frac{π}{12}$-$\frac{π}{4}$)=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
故|AB|=$\sqrt{3}$.

點(diǎn)評(píng) 本題考查參數(shù)方程和普通方程及極坐標(biāo)方程的互化,同時(shí)考查極坐標(biāo)方程的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)A(2,1),拋物線y2=4x的焦點(diǎn)F,P是拋物線上的一動(dòng)點(diǎn)則|PA|+|PF|的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在四棱錐S-ABCD中,SA⊥平面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=$\frac{1}{3}$BC=1,E為SD的中點(diǎn).
(1)若F為線段BC上一點(diǎn),且BF=$\frac{1}{6}$BC,求證:EF∥平面SAB;
(2)在線段BC上是否存在一點(diǎn)G,使得直線EG與平面SBC所成角的正弦值為$\frac{\sqrt{7}}{14}$?若存在,求出BG的長度,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=cosxcos(x+$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(c)=-$\frac{1}{4}$,a=2,且△ABC的面積為2$\sqrt{3}$,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x2≤4,x∈R},B={x|$\sqrt{x}$≤4,x∈Z},則A∩B( 。
A.(0,2)B.[0,2]C.{0,1,2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù),f(x)=lnx+$\frac{k}{x}$,k∈R.
(1)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x-2=0垂直,求f(x)的單調(diào)遞減區(qū)間和極小值(其中e為自然對(duì)數(shù)的底數(shù));
(2)若對(duì)任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則此幾何體不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|y=$\sqrt{{x}^{2}-2x-3}$},B={y|y=3sinx-1},則集合B∩∁RA=(  )
A.(-1,2]B.C.[-4,-1]D.[-4,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若不等式(-2)na-3n-1-(-2)n<0對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(1,$\frac{4}{3}$)B.($\frac{1}{2}$,$\frac{4}{3}$)C.(1,$\frac{7}{4}$)D.($\frac{1}{2}$,$\frac{7}{4}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案