A. | ①②③ | B. | ①③④ | C. | ②③④ | D. | ①②④ |
分析 利用向量的數(shù)量積求出角判斷①的正誤;向量的數(shù)量積是否為0判斷②的正誤;向量的數(shù)量積的符號判斷③的正誤;向量數(shù)量積是否為0判斷④的正誤;
解答 解:①真命題.若$\overrightarrow a•\overrightarrow b=|\overrightarrow a|•|\overrightarrow b|$,則cosθ=1,θ=0,∴$\overrightarrow a∥\overrightarrow b$;∴$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}|•|{\overrightarrow b}|$⇒$\overrightarrow a∥\overrightarrow b$
若$\overrightarrow a∥\overrightarrow b$,$\overrightarrow a•\overrightarrow b=|\overrightarrow a|•|\overrightarrow b|cosθ$,∴θ=0或π;∴$\overrightarrow{a}∥\overrightarrow$不能說$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}|•|{\overrightarrow b}|$,所以$\overrightarrow a$、$\overrightarrow b$均為非零向量,則$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}|•|{\overrightarrow b}|$是$\overrightarrow a∥\overrightarrow b$的充分不必要條件.
②真命題.$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c?\overrightarrow a•\overrightarrow b-\overrightarrow a•\overrightarrow c=0?\overrightarrow a•(\overrightarrow b-\overrightarrow c)=0?\overrightarrow a⊥(\overrightarrow b-\overrightarrow c)$;
③假命題.$(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cos∠ABC}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cos∠ACB})•\overrightarrow{BC}=|\overrightarrow{BC}|-|\overrightarrow{BC}|=0$$\overrightarrow{AB}•\overrightarrow{BC}=|{\overrightarrow{AB}}|•|{\overrightarrow{BC}}|cos(π-B)>0⇒cosB<0$,鈍角三角形;
④真命題.$(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cos∠ABC}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cos∠ACB})•\overrightarrow{BC}$
=$\frac{\overrightarrow{BC}•\overrightarrow{AB}}{|\overrightarrow{AB}|cos∠ABC}+\frac{\overrightarrow{BC}•\overrightarrow{AC}}{|\overrightarrow{AC}|cos∠ACB}$
=$|\overrightarrow{BC}|-|\overrightarrow{BC}|=0$,
∴$\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|cos∠ABC}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|cos∠ACB}}$與$\overrightarrow{BC}$向量垂直.
故選:D.
點(diǎn)評 本題考查命題的真假的判斷,數(shù)量積的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在棱AD上存在點(diǎn)M,使AD⊥平面PMB | B. | 異面直線AD與PB所成的角為90° | ||
C. | 二面角P-BC-A的大小為45° | D. | BD⊥平面PAC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com