17.已知f(x)在R上可導,且滿足(x-2)f′(x)≥0,則f(-2015)+f(2015)≥(大于等于)2f(2)(填兩個數(shù)值的大小關系:>、=、<、≥、≤).

分析 根據(jù)條件判斷函數(shù)的單調性,利用函數(shù)的單調性進行比較即可.

解答 解:當x>2時,f′(x)≥0時,函數(shù)為增函數(shù),
當x<2時,f′(x)≤0時,函數(shù)為減函數(shù),
即當x=2時,函數(shù)為極小值同時也是最小值,
故f(2015)≥f(2),
f(-2015)≥f(2),
則f(2015)+f(2015)≥2f(2),
故答案為:≥.

點評 本題主要考查函數(shù)值的大小比較,求函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調性是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},則圖中陰影部分表示的集合是( 。
A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.有下列說法其正確是(  )
A.0與{0}表示同一個集合
B.由1,2,3組成的集合可表示為{1,2,3}或{3,2,1}
C.方程(x-1)2(x-2)=0的所有解的集合可表示為{1,1,2}
D.集合{x|4<x<5}是有限集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.把sin$\frac{π}{12}$,sin$\frac{5}{12}π$,cos$\frac{5}{7}π$,tan$\frac{5}{12}π$由小到大排列為$cos\frac{5π}{7}$<$sin\frac{π}{12}$<$sin\frac{5}{12}π$<$tan\frac{5}{12}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=mx2-x+lnx.
(1)當m=-1時,求f(x)的極大值;
(2)若在函數(shù)f(x)的定義域內存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實數(shù)m的取值范圍;
(3)當$0<m≤\frac{1}{2}$時,若曲線C:y=f(x)在點x=1處的切線l與曲線C有且只有一個公共點,求m的值或取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)f(x)=3x|${log_{\frac{1}{3}}}$x|-1的零點個數(shù)為2•

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設函數(shù)f(x)是定義在R上的奇函數(shù),且對任意x∈R都有f(x)=f(x+4),當,x∈(0,2)時,f(x)=2x,則f(2015)的值為( 。
A.-2B.-1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=ax-1+2的圖象恒過一定點,則這個定點坐標是(1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設函數(shù)f(x)=$\left\{\begin{array}{l}{asinx+2,x≥0}\\{{x}^{2}+2a,x<0}\end{array}\right.$(其中a∈R)的值域為S,若[1,+∞)⊆S,則a的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.[1,$\frac{3}{2}$]∪($\frac{7}{4}$,2]C.(-∞,$\frac{1}{2}$)∪[1,2]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步練習冊答案