分析 以O(shè)為直角坐標(biāo)原點(diǎn),OA所在直線為x軸,建立直角坐標(biāo)系求得A,B,C的坐標(biāo),設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,利用向量坐標(biāo)運(yùn)算、向量基本定理解方程即可得出.
解答 解:如圖所示,建立直角坐標(biāo)系.
由$\overrightarrow{OC}$與$\overrightarrow{OA}$的夾角為30°,|$\overrightarrow{OC}$|=5,可得C($\frac{5\sqrt{3}}{2}$,$\frac{5}{2}$),
|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為120°,
可得B(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),A(1,0),
設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,
則($\frac{5\sqrt{3}}{2}$,$\frac{5}{2}$)=m(1,0)+n(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
∴$\frac{5\sqrt{3}}{2}$=m-$\frac{1}{2}$n,$\frac{5}{2}$=$\frac{\sqrt{3}}{2}$n.
解得n=$\frac{5\sqrt{3}}{3}$,m=$\frac{10\sqrt{3}}{3}$.
∴$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.
故答案為:$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.
點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算、向量基本定理,考查了計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | R | B. | [0,2]∪{3} | C. | [0,+∞) | D. | [-3,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 6 | C. | 12 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | -$\frac{5}{6}$ | C. | -$\frac{7}{18}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com