17.如圖所示在平面四邊形ABCD中,AB=1,BC=2,△ACD為正三角形,則△BCD的面積的最大值為$\sqrt{3}$+1.

分析 ,運(yùn)用余弦定理,表示出AC,進(jìn)而用三角函數(shù)表示出S△BCD

解答 解:在△ABC中,設(shè)∠ACB=α,∠ACB=β,由余弦定理得:
AC2=12+22-2×1×2cosα=5-4cosα,
∵△ACD為正三角形,
∴CD2=5-4cosα,
由正弦定理得:$\frac{1}{sinβ}$=$\frac{AC}{sinα}$,
∴AC•sinβ=sinα,
∴CD•sinβ=sinα,
∵(CD•cosβ)2=CD2(1-sin2β)=CD2-sin2α=5-4cosα-sin2α=(2-cosα)2,
∵β<∠BAC,∴β為銳角,CD•cosβ=2-cosα,
∴S△BCD=$\frac{1}{2}$•2•CD•sin($\frac{π}{3}$+β)=CD•sin($\frac{π}{3}$+β)=$\frac{\sqrt{3}}{2}$CD•cosβ+$\frac{1}{2}$CD•sinβ=$\frac{\sqrt{3}}{2}$•(2-cosα)+$\frac{1}{2}$sinα=$\sqrt{3}$+sin(α-$\frac{π}{3}$),
當(dāng)α=$\frac{5π}{6}$時(shí),(S△BCDmax=$\sqrt{3}$+1.

點(diǎn)評 本題考查三角形的面積的最值的求法,注意運(yùn)用余弦定理和面積公式,同時(shí)考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,a1=1,a2=3.
(1)求an,Sn
(2)若a3,Sn+5,a5成等差數(shù)列,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足a1=1,a2=2,$\frac{{{a_{n+2}}}}{a_n}$=3,則當(dāng)n為偶數(shù)時(shí),數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}$(${3}^{\frac{n}{2}}$-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,四邊形ABCD是菱形,并且PA=3,AB=2,∠ABC=60°,點(diǎn)Q為BC中點(diǎn).
(1)證明:PD⊥AQ;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=|x+1|+|x-2|
(Ⅰ)求f(x)的最小值,并求出f(x)取最小值時(shí)x的取值范圍;
(Ⅱ)若不等式f(x)≤a(x+1)的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{3+i}{1-i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$所對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)$f(x)=\left\{\begin{array}{l}{log_a}x,x>2\\-{x^2}+2x-2,x≤2\end{array}\right.$(a>0,a≠1)的值域是(-∞,-1],則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某餐飲連鎖企業(yè)在某地級市東城區(qū)和西城區(qū)各有一個(gè)加盟店,兩店在2015年的1~7月份的利潤y(單位:萬元)如莖葉圖所示:
(1)計(jì)算甲店和乙店在1~7月份的平均利潤,比較兩店利潤的分散程度(不用計(jì)算);
(2)從這兩點(diǎn)1~7月份的14個(gè)利潤中選取2個(gè),設(shè)這2個(gè)利潤中“大于45萬元”的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.
(3)假設(shè)甲店1~7月份的利潤恰好是遞增的,判斷甲店的利潤y和月份t是否具有線性相關(guān)關(guān)系,若具有,預(yù)測甲店8月份的利潤,若沒有,請說明理由.(小數(shù)點(diǎn)后保留兩位小數(shù))
附:回歸直線的斜率的最小乘法估計(jì)公式:
b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足2anan+1=an-an+1,且a1=$\frac{1}{2}$,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,若數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}(n=2k-1)}\\{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}(n=2k)}\end{array}\right.$(k∈N+),求S64;
(3)設(shè)Tn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$,是否存在實(shí)數(shù)c,使{$\frac{{T}_{n}}{n+c}$}為等差數(shù)列,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案