15.如圖所示,P1(x1,y1)、P2(x2,y2),…Pn(xn,yn)在函數(shù)y=$\frac{4}{x}$(x>0)的圖象上,△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An…都是等腰直角三角形,斜邊OA1,A1A2…An-1An,都在x軸上,則y1+y2+…y10=$2\sqrt{10}$.

分析 由題意可得:直線OP1方程為y=x,聯(lián)立$\left\{\begin{array}{l}{y=x}\\{y=\frac{4}{x}}\end{array}\right.$,解得P1(2,2),A1(4,0),同理可得:${P}_{2}(2+2\sqrt{2},2\sqrt{2}-2)$,A2$(4\sqrt{2},0)$,…,${y}_{n}=2\sqrt{n}-2\sqrt{n-1}$.
即可得出.

解答 解:∵P1(x1,y1)、P2(x2,y2),…Pn(xn,yn)在函數(shù)y=$\frac{4}{x}$(x>0)的圖象上,△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An…都是等腰直角三角形,
∴直線OP1方程為y=x,聯(lián)立$\left\{\begin{array}{l}{y=x}\\{y=\frac{4}{x}}\end{array}\right.$,解得x=y=2,
∴P1(2,2),A1(4,0),
同理可得:${P}_{2}(2+2\sqrt{2},2\sqrt{2}-2)$,A2$(4\sqrt{2},0)$,…,
同理可得${y}_{n}=2\sqrt{n}-2\sqrt{n-1}$.
∴y1+y2+…+yn
=2+$(2\sqrt{2}-2)$+$(2\sqrt{3}-2\sqrt{2})$+…+$(2\sqrt{n}-2\sqrt{n-1})$
=2$\sqrt{n}$.
故答案為:2$\sqrt{10}$.

點(diǎn)評 本題考查了“累加求和”方法、直線與曲線的交點(diǎn)、等腰直角三角形的性質(zhì),考查了數(shù)形結(jié)合的思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在極坐標(biāo)系下,曲線C:ρ($\sqrt{3}$cosθ-sinθ)=-4,點(diǎn)A(2,$\frac{5π}{6}$).
(1)判斷曲線C與點(diǎn)A的位置關(guān)系;
(2)已知極坐標(biāo)的極點(diǎn)與直角坐標(biāo)原點(diǎn)重合,極軸與直角坐標(biāo)的x軸正半軸重合,直線l:$\left\{\begin{array}{l}{x=\sqrt{3}-\sqrt{3}t}\\{y=-2+3t}\end{array}\right.$(t為參數(shù)),求曲線C與直線l交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.己知i為虛數(shù)單位,則復(fù)數(shù)$\frac{10}{3+i}$=3-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=$\frac{{x}^{2}-5x+a}{x-2}$(x>2,a>6)的最小值是5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.根據(jù)sinθ>0且tanθ<0,確定θ是第幾象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知定義域?yàn)閇1,+∞),值域?yàn)閇1,+∞)的函數(shù)f(x)是增函數(shù),若f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,A,B,C為三角形的三個內(nèi)角,已知A>B>C,則cosB取值范圍為(0,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知在△ABC中,a=3,c=2,∠B=150°,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}的前n項(xiàng)和為sn,a1=λ,且當(dāng)n為奇數(shù)時,an+1=an+2,當(dāng)n為偶數(shù)時,an+1=Sn.若bn=a2n-1+1,判斷數(shù)列{bn}是否為等比數(shù)列,若是,求該數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案