【題目】記函數(shù)的定義域?yàn)?/span>A,的定義域?yàn)?/span>B

(1)求A;

(2)若BA,求實(shí)數(shù)a的取值范圍.

【答案】(1)(-∞,-1)∪[1,+∞)(2)(-∞,-2]∪[,1)

【解析】

1)由根式內(nèi)部的代數(shù)式大于等于0求解分式不等式可得A

2)由分母中根式內(nèi)部的代數(shù)式大于0求解B,再由集合間的包含關(guān)系列式求得實(shí)數(shù)a的取值范圍.

解:(1)由2-≥0,得≥0,

x-1x≥1

A=-∞-1)∪[1,+∞);

2)由(x-a-1)(2a-x)>0,得(x-a-1)(x-2a)<0

a1,∴a+12a,則B=2aa+1).

BA,∴2a≥1a+1≤-1,即aa≤-2,而a1,

a1a≤-2,

故當(dāng)BA時(shí),實(shí)數(shù)a的取值范圍是(-∞-2][,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1

I)求此拋物線的方程;

)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為正整數(shù),記平面點(diǎn)集.問(wèn):平面內(nèi)最少要有多少條直線,它們的并集才能包含,但不含點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中向量,().

(1)求的最小正周期和最小值;

(2)在△ABC中,角A、B、C的對(duì)邊分別為、,若,a=,求邊長(zhǎng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線C交于A,B兩點(diǎn),且線段AB被直線OP平分.

1)求橢圓C的方程;

2)求k的值;

3)求面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為滿足,,,且.若存在,使得成立,則實(shí)數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓軸正、負(fù)半軸分別交于點(diǎn).橢圓為短軸,且離心率為.

1)求的方程;

2)過(guò)點(diǎn)的直線分別與圓,曲線交于點(diǎn)(異于點(diǎn).直線分別與軸交于點(diǎn).,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的動(dòng)弦過(guò)點(diǎn)過(guò)點(diǎn)且垂直于弦的直線交拋物線的準(zhǔn)線于點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;

(Ⅱ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點(diǎn).

(1)證明:平面

(2)若平面,求的值;

(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案