【題目】(1)已知橢圓方程為,點(diǎn).
i.若關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn)記直線(xiàn)的斜率分別為,試計(jì)算的值;
ii.若關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn)記直線(xiàn)的斜率分別為,試計(jì)算的值;
(2)根據(jù)上題結(jié)論探究:若是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),且直線(xiàn)的斜率都存在,并分別記為,試猜想的值,并加以證明.
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:(1)i直接求出、的值,即可得結(jié)果;ii直接求出的值,即可得結(jié)果;(2)根據(jù)兩種特殊情況進(jìn)行歸納推理可得: ,其中點(diǎn)是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),然后設(shè)出點(diǎn) 的坐標(biāo),代入橢圓方程并作差,變形整理即可得到是與點(diǎn)位置無(wú)關(guān)的定值.
試題解析:(1)i. 因?yàn)?/span>,
所以
ii. 因?yàn)?/span>,
所以
(2)猜想
證明: 設(shè)點(diǎn),則點(diǎn),從而,設(shè)點(diǎn),
由,
得(*)
由, ,
代入(*)式得
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)∩B=,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若且, .
(i)求實(shí)數(shù)的最大值;
(ii)證明不等式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿(mǎn)足f(x)=f(x+4),當(dāng)2≤x≤6時(shí), ,f(4)=31.
(1)求m,n的值;
(2)比較f(log3m)與f(log3n)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若在恒成立,求的取值范圍;
(3)若關(guān)于的方程在區(qū)間內(nèi)的解恰有一個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶(hù):
分值區(qū)間 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
男性用戶(hù):
分值區(qū)間 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)如果評(píng)分不低于70分,就表示該用戶(hù)對(duì)手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別對(duì)手機(jī)的“認(rèn)可”有關(guān):
女性用戶(hù) | 男性用戶(hù) | 合計(jì) | |
“認(rèn)可”手機(jī) | |||
“不認(rèn)可”手機(jī) | |||
合計(jì) |
附:
0.05 | 0.01 | |
3.841 | 6.635 |
(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶(hù)中抽取20名用戶(hù),在這20名用戶(hù)中,從評(píng)分不低于80分的用戶(hù)中任意抽取2名用戶(hù),求2名用戶(hù)中評(píng)分小于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),( )滿(mǎn)足:①;②.
(1)求的值;
(2)若對(duì)任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com