15.已知函數(shù)y=ex,若f(x)的圖象的一條切線經(jīng)過點(-1,0),則這條切線與直線x=2及x軸所圍成的三角形面積為( 。
A.$\frac{4}{e}$B.$\frac{9}{2}$C.2D.$\frac{{e}^{2}}{2}$

分析 設(shè)出切點坐標(biāo),求出導(dǎo)數(shù),求得切線的斜率,求解切線方程,求出切線與x=2的交點,運用三角形的面積公式計算即可得到.

解答 解:設(shè)切點(a,ea),
函數(shù)y=ex的導(dǎo)數(shù)為y′=ex,
在切點(a,ea)處的切線斜率為:ea
由題意可得:ea=$\frac{{e}^{a}-0}{a+1}$,解得a=0,
切線斜率為:1,切點為(0,1),
切線方程為:y=x+1.
故切線與直線x=2及x軸所圍成的三角形面積為:$\frac{1}{2}$×3×3=$\frac{9}{2}$.
故選:B.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查兩點的斜率公式,以及三角形的面積的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a為實數(shù),且2+ai=(1+i)(3+i),則a=( 。
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若非零實數(shù)x,y,z滿足2x=3y=6z,則$\frac{x+y}{z}$∈( 。
A.(5,6)B.(4,5)C.(3,4)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x-tsinx(0<t≤1),若f(log2m)>-f(-1),則實數(shù)m的取值范圍是( 。
A.(0,2)B.(0,1)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(φ>0,|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
φx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{12}$$\frac{7π}{12}$$\frac{5π}{6}$
Asin(φx+φ)030-30
(Ⅰ)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(Ⅱ)將y=f(x)圖象上所有點向右平行移動$\frac{π}{3}$個單位長度,得到y(tǒng)=g(x)圖象,求y=g(x)的圖象離y軸最近的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若全集U=R,A=[1,3],B={x|x2-2x≤0},則A∩(∁UB)=( 。
A.[1,2]B.(-∞,0)∪(2,3]C.[0,1)D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{sinπx,0≤x≤1}\\{lo{g}_{2015}x,x≥1}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍為(2,2016).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.為了慶祝建廠10周年,某食品廠制作了3種分別印有卡通人物豬豬俠、虹貓和無眼神兔的精美卡片,每袋食品隨機裝入一張卡片,集齊3種卡片可獲獎,張明購買了5袋該食品,則他可能獲獎的概率是$\frac{50}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+bsinx-2(b∈R),g(x)=f(x)+2且g(x)是偶函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)h(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案