10.如果x2+y2-2x+y+k=0是圓的方程,則實(shí)數(shù)k的取值范圍是$k<\frac{5}{4}$.

分析 直接由D2+E2-4F>0列式求解k的值.

解答 解:因?yàn)閤2+y2-2x+y+k=0是圓的方程,
所以有(-2)2+12-4k>0,解得$k<\frac{5}{4}$.
所以若x2+y2-2x+y+k=0是圓的方程,則實(shí)數(shù)k的取值范圍是$k<\frac{5}{4}$.
故答案為:$k<\frac{5}{4}$.

點(diǎn)評(píng) 本題考查了圓的一般式方程,考查了二元二次方程表示圓的條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}滿足a1=0,且$\frac{1}{{1-{a_{n+1}}}}$-$\frac{1}{{1-{a_n}}}$=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{1-{a_{n+1}}}}{n}$,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$命題p:\overrightarrow a=(x,-1),\overrightarrow b=(4,3),|{\overrightarrow a•\overrightarrow b}|≤1$;命題q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.sin(75°-α)=(  )
A.sin(15°-α)B.sin(15°+α)C.cos(15°-α)D.cos(15°+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l的方程為x+2y-1=0,點(diǎn)P的坐標(biāo)為(1,-2).
(Ⅰ)求過P點(diǎn)且與直線l平行的直線方程;
(Ⅱ)求過P點(diǎn)且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若a=2,A=30°,B=45°,則邊b的大小為(  )
A.$2\sqrt{2}$B.2C.$\sqrt{6}+\sqrt{2}$D.$\sqrt{6}+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知A(1,0),B(0,1),則與$\overrightarrow{AB}$方向相同的單位向量為$(-\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左焦點(diǎn)為F(-1,0),過D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在y軸上,是否存在定點(diǎn)E,$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某飲料店某5天的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:℃)之間的數(shù)據(jù)如表:
x-2-1012
y54221
甲、乙、丙、丁四位同學(xué)對(duì)上述數(shù)據(jù)進(jìn)行了研究,分別得到了x與y之間的四個(gè)線性回歸方程:①$\widehat{y}$=-x+3,②$\widehat{y}$=-x+2.8,③$\widehat{y}$=-x+2.6,④$\widehat{y}$=-x+2.4,其中正確的方程是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案