17.若雙曲線kx2-y2=1的一個焦點的坐標(biāo)是(2,0),則k=$\frac{1}{3}$.

分析 由題意可得雙曲線的焦點在x軸上,將雙曲線的方程化為標(biāo)準(zhǔn)方程,求得a,b,c,解k的方程可得所求值.

解答 解:由題意可得雙曲線的焦點在x軸上,可得:
雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{\frac{1}{k}}$-y2=1,(k>0),
即有a2=$\frac{1}{k}$,b2=1,c2=1+$\frac{1}{k}$,
由一個焦點的坐標(biāo)是(2,0),可得1+$\frac{1}{k}$=4,
解得k=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查雙曲線的方程和性質(zhì),注意將雙曲線的方程化為標(biāo)準(zhǔn)方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過點(0,-3)且平行于直線2x+3y-4=0的直線方程是2x+3y+9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示,直角梯形OABE,直線x=t左邊截得面積S=f(t)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,在矩形ABCD中,AB=$\sqrt{3}$,BC=4,E是邊AD上一點,且AE=3,把△ABE沿BE翻折,使得點A到A′,滿足平面A′BE與平面BCDE垂直(如圖2),連結(jié)A′C,A′D.
(1)求四棱錐A′-BCDE的體積;
(2)在棱A′C是否存在點R,使得DR∥平面A′BE?若存在,請求出$\frac{A′R}{CR}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.焦點在x軸上,焦距為10,且與雙曲線x2-$\frac{{y}^{2}}{4}$=1有相同漸近線的雙曲線的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C:x2+2my2=1的兩條漸近線互相垂直,則拋物線E:y=mx2的焦點坐標(biāo)是( 。
A.(0,1)B.(0,-1)C.(0,$\frac{1}{2}$)D.(0,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是偶函數(shù),當(dāng)x>0時,$f(x)={x^{\frac{1}{3}}}$,則在(-2,0)上,下列函數(shù)中與f(x)的單調(diào)性相同的是( 。
A.y=-x2+1B.y=|x+1|
C.y=e|x|D.$y=\left\{{\begin{array}{l}{2x-1,x≥0}\\{{x^3}+1,x<0}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,則a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,M1,M2分別是邊BC,AC的中點,AM1與BM2相交于點G,BC的垂直平分線與AB交于點N,且$\overrightarrow{NG}$•$\overrightarrow{NC}$-$\overrightarrow{NG}$•$\overrightarrow{NB}$=$\frac{1}{6}$$\overrightarrow{BC}$2,則△ABC是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.任意三角形

查看答案和解析>>

同步練習(xí)冊答案