精英家教網 > 高中數學 > 題目詳情
6.已知數列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,則a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 根據分段函數代值計算即可得到,各項值成周期為4重復出現,問題得以解決.

解答 解:a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,
∵a1=$\frac{4}{5}$,∴a2=2a1-1=$\frac{3}{5}$,a3=2a2-1=$\frac{1}{5}$,a4=2a3=$\frac{2}{5}$,a5=2a4=$\frac{4}{5}$,各項值成周期為4重復出現
∴an+4=an
則a2015=a4×503+3=a3=$\frac{1}{5}$,
故選:A.

點評 本題考查了數列的周期性、分段函數的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.不等式($\frac{1}{3}$)2x-1<3x的解集為($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.若雙曲線kx2-y2=1的一個焦點的坐標是(2,0),則k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.設點M(x,y),其軌跡為曲線C,若$\overrightarrow{a}$=(x-2,y),$\overrightarrow$=(x+2,y),||$\overrightarrow{a}$|-|$\overrightarrow$||=2,則曲線C的離心率等于2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知拋物線M:y2=12x的焦點F到雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)漸近線的距離為$\frac{3\sqrt{10}}{4}$,點P是拋物線M上的一動點,且P到雙曲線C的焦點F1(0,c)的距離與到直線x=-3的距離之和的最小值為5,則雙曲線C的方程為(  )
A.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1D.$\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖,已知四棱錐S-ABCD,底面ABCD是邊長為2的棱形,∠ABC=60°,側面SAD為正三角形,側面SAD⊥底面ABCD,M為側棱SB的中點,E為線段AD的中點.
(Ⅰ)求證:SD∥平面MAC;
(Ⅱ)求證:SE⊥AC;
(Ⅲ)求三棱錐M-ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點垂直于x軸的弦長為a.則雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知Sn,Tn分別是等差數列{an},{bn}的前n項和,且$\frac{S_n}{T_n}=\frac{2n+1}{4n-2}(n∈{N^*})$,則$\frac{a_9}{{{b_1}+{b_{17}}}}+\frac{a_9}{{{b_5}+{b_{13}}}}$=$\frac{35}{66}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=x2-(2a+1)x+alnx(a∈R).
(1)若a=1,求y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在區(qū)間[1,2]上是單調函數,求實數a的取值范圍;
(3)函數g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案