分析 設(shè)函數(shù)f(x)=4x2-4ax+a2-2a+2在區(qū)間[0,2]上有最小值g(a),對(duì)函數(shù)進(jìn)行配方,對(duì)對(duì)稱軸是否在區(qū)間內(nèi)進(jìn)行討論,從而可知函數(shù)在何處取得最小值,解出相應(yīng)的a的范圍即可.
解答 解:設(shè)f(x)=4x2-4ax+a2-2a+2在區(qū)間[0,2]上有最小值g(a),對(duì)稱軸為x=$\frac{a}{2}$,
①當(dāng)$\frac{a}{2}$≤0,即a≤0,區(qū)間[0,2]為增區(qū)間,可得f(x)min=f(0)=a2-2a+2;
②當(dāng)0<$\frac{a}{2}$<2即0<a<4時(shí),f(x)min=f($\frac{a}{2}$)=-2a+2;
③當(dāng)$\frac{a}{2}$≥2即a≥4時(shí),函數(shù)f(x)在[0,2]上是減函數(shù),
即有f(x)min=f(2)=a2-10a+18.
則g(a)=$\left\{\begin{array}{l}{{a}^{2}-2a+2,a≤0}\\{2-2a,0<a<4}\\{{a}^{2}-10a+18,a≥4}\end{array}\right.$.
點(diǎn)評(píng) 本題考查二次函數(shù)在閉區(qū)間上的最值問(wèn)題中的動(dòng)軸定區(qū)間上的最值問(wèn)題,體現(xiàn)了分類討論和運(yùn)動(dòng)變化的思想方法,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4$\sqrt{3}$π | B. | 12π | C. | 8π | D. | 4$\sqrt{6}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com