14.已知${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,求:
(1)a1+a2+…+a7
(2)a1+a3+a5+a7;
(3)|a0|+|a1|+…+|a7|

分析 (1)在所給的等式中,令x=0,可得常數(shù)項a0=1;令x=1可得a0+a1+a2+a3+…+a7=-1,從而求得a1+a2+a3+…+a7的值.
(2)在所給的等式中,分別令x=1、-1,得到2個等式,再把這2個等式相減,可得a1+a3+a5+…+a7的值.
(3)在(1+2x)7 中,令x=1,可得要求式子的值.

解答 解:(1)在${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$中,令x=0,可得常數(shù)項a0=1.
在所給的等式中,令x=1可得a0+a1+a2+a3+…+a7=-1,
∴a1+a2+a3+…+a7=-2.
(2)在所給的等式知${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$中,令x=1可得a0+a1+a2+a3+…+a7=-1①,
令x=-1可得得${a_0}-{a_1}+{a_2}-{a_3}+…-{a_7}={3^7}$②,
用①減去②再除以2可得a1+a3+a5+…+a7=-1094.
(3)在(1+2x)7 中,令x=1,可得$|{a_0}|+|{a_1}|+|{a_2}|+…+|{a_7}|={3^7}=2187$.

點評 本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設集合A={y|y=3x,x∈R},B={x|-1<x<1},則A∪B=( 。
A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$cosx•sin(x+\frac{π}{6})$
(1)求函數(shù)f(x)的最小正周期;’
(2)將函數(shù)y=f(x)的圖象向下平移$\frac{1}{4}$個單位,再將圖象上各點的縱坐標伸長到原來的2倍(橫坐標不變),得到函數(shù)y=g(x)的圖象,求使g(x)>$\frac{1}{2}$成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=sinx的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x.
(Ⅰ)求函數(shù)f(x)的對稱軸所在的直線方程;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=3,c=1,ab=2$\sqrt{3}$,且a<b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.等差數(shù)列{an}的前n項和為Sn,且滿足a2=3,S6=36,則a4=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一段圖象如圖所示,
(1)求函數(shù)的解析式.
(2)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖:已知四棱錐P-ABCD,底面是邊長為6的正方形ABCD,PA=8,PA⊥面ABCD,點M是CD的中點,點N是PB的中點,連接AM、AN、MN.
(1)求證:AB⊥MN
(2)求異面直線AM與PB所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設m,n分別是先后拋擲一枚骰子得到的點數(shù),則方程x2+mx+n=0有實根的概率為(  )
A.$\frac{19}{36}$B.$\frac{11}{36}$C.$\frac{7}{12}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案