4.某地實行階梯電價,以日歷年(每年1月1日至12月31日)為周期執(zhí)行居民階梯電價,即:一戶居民用戶全年不超過2880度(1度=千瓦時)的電量,執(zhí)行第一檔電價標(biāo)準(zhǔn),每度電0.4883元;全年超過2880度至4800度之間的電量,執(zhí)行第二檔電價標(biāo)準(zhǔn),每度電0.5383元;全年超過4800度以上的電量,執(zhí)行第三檔電價標(biāo)準(zhǔn),每度電0.7883元.下面是關(guān)于階梯電價的圖形表示,其中正確的有( 。

參考數(shù)據(jù):0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.
A.①②B.②③C.①③D.①②③

分析 通過居民階梯電價可知圖象①不正確,通過記用電量為x度可知電費f(x)的表達(dá)式,進(jìn)而可知②③均正確.

解答 解:依題意,當(dāng)全年用電量在2880度至4800度之間時,電價分兩段,
即全年電量中的2880度(1度=千瓦時)的每度電0.4883元、超出部分按每度電0.5383元計算,
故圖象①不正確;
記用電量為x度,電費為f(x)元/年,
則f(x)=$\left\{\begin{array}{l}{0.4883x,0≤x≤2880}\\{0.4883×2880+0.5383(x-2880),2880<x≤4800}\\{0.4883×2800+0.5383×(4800-2800)+0.7883(x-4800),x>4800}\end{array}\right.$
=$\left\{\begin{array}{l}{0.4883x,0≤x≤2880}\\{1406.3+0.5383(x-2880),2880<x≤4800}\\{2439.84+0.7883(x-4800),x>4800}\end{array}\right.$,
故②③均正確;
綜上所述,正確的是②③,
故選:B.

點評 本題考查函數(shù)模型的選擇與應(yīng)用,考查分類討論的思想,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,A,B是單位圓O上的動點,C是圓與x軸正半軸的交點,設(shè)∠COA=α.
(1)當(dāng)點A的坐標(biāo)為$(\frac{3}{5},\frac{4}{5})$時,求$\frac{cos2α}{1+sin2α}$的值.
(2)若0≤α≤$\frac{π}{3}$,且當(dāng)點A,B在圓上沿逆時針方向移動時,總有∠AOB=$\frac{π}{3}$,試求BC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.三視圖如圖所示,則該幾何體的表面積為12+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點為$(-\sqrt{3},0)$,且實軸長為2.
(1)求雙曲線C的方程;  
(2)求直線$y=x-\sqrt{3}$被雙曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=sin(x+\frac{π}{6})+2{sin^2}\frac{x}{2}$.
(1)求函數(shù)f(x)的對稱軸方程與對稱中心坐標(biāo);
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且a=$\sqrt{3},f(A)=\frac{3}{2}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.第二屆世界互聯(lián)網(wǎng)大會在浙江省烏鎮(zhèn)開幕后,某科技企業(yè)為抓住互聯(lián)網(wǎng)帶來的機遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本為C(x)萬元.若年產(chǎn)量不足80臺時,C(x)=$\frac{1}{2}$x2+40x(萬元);若年產(chǎn)量不小于80臺時,C(x)=101x+$\frac{8100}{x}$-2180(萬元).每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤y(萬元)關(guān)于年產(chǎn)量x(臺)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線1的參數(shù)方程是$\left\{\begin{array}{l}{x=3+\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}\right.(t∈R)$(t∈R),求過點(4,-1)且與l平行的直線m在y軸上的截距為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題“?x∈R,x2-x+1<0”的否定是?x∈R,x2-x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a>b>0,則下列不等式正確的是(  )
A.sina>sinbB.log2a<log2bC.a${\;}^{\frac{1}{2}}$<b${\;}^{\frac{1}{2}}$D.($\frac{1}{2}$)a<($\frac{1}{2}$)b

查看答案和解析>>

同步練習(xí)冊答案