6.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+6y的最大值為18.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合的得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$作出可行域如圖,

A(0,3),
化目標(biāo)函數(shù)z=x+6y為y=-$\frac{x}{6}+\frac{z}{6}$,
由圖可知,當(dāng)直線y=-$\frac{x}{6}+\frac{z}{6}$過(guò)A時(shí),直線在y軸上的截距最大,z有最大值為18.
故答案為:18.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)的義域?yàn)镈.對(duì)于任意的x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x_1})•f({x_2})}=M$成立,則稱(chēng)函數(shù)f(x)在D上的幾何平均數(shù)為M.已知函數(shù)g(x)=3x+1(x∈[0,1]),則g(x)在區(qū)間[0,1]上的幾何平均數(shù)為(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解關(guān)于x的不等式:ax2-2ax>x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算下列各式的值:
(1)($\frac{1}{16}$)${\;}^{-\frac{3}{4}}$-4•(-2)-3+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$;
(2)2log32-log3$\frac{32}{9}$+log38-2${\;}^{lo{g}_{2}3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.運(yùn)行下面的程序,如果輸入的n是6,那么輸出的p是720   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$f(x)=-\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x$的極大值點(diǎn)是(  )
A.$-\frac{4}{5}$B.1C.$\frac{7}{6}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某研究機(jī)構(gòu)對(duì)高二學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù)
x681012
y3467
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
($\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知p:|x+1|≤2,q:(x+1)(x-m)≤0
(1)若m=4,命題“p或q”為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在菱形ABCD中,∠BAD=60°,線段AD,BD的中點(diǎn)分別為E,F(xiàn).現(xiàn)將△ABD沿對(duì)角線BD翻折,則異面直線BE與CF所成角的取值范圍是( 。
A.($\frac{π}{6}$,$\frac{π}{3}$)B.($\frac{π}{6}$,$\frac{π}{2}$]C.($\frac{π}{3}$,$\frac{π}{2}$]D.($\frac{π}{3}$,$\frac{2π}{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案