11.函數(shù)$f(x)=-\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x$的極大值點(diǎn)是(  )
A.$-\frac{4}{5}$B.1C.$\frac{7}{6}$D.-2

分析 先求導(dǎo)函數(shù),確定導(dǎo)數(shù)為0的點(diǎn),再確定函數(shù)的單調(diào)區(qū)間,利用左增右減,從而確定函數(shù)的極大值點(diǎn).

解答 解:∵f$f(x)=-\frac{1}{3}{x}^{3}-\frac{1}{2}{x}^{2}+2x$,
∴f′(x)=-x2-x+2.
當(dāng)f′(x)=0時(shí),-x2-x+2=0
∴x=1或x=-2
令f′(x)<0,得x<-2或x>1
令f′(x)>0,得-2<x<1
∴函數(shù)的單調(diào)減區(qū)間為(-∞,-2),(1,+∞),函數(shù)的單調(diào)減區(qū)間為(-2,1)
∴函數(shù)的極大值點(diǎn)是x=1.
故選:B.

點(diǎn)評(píng) 本題考查的重點(diǎn)是函數(shù)的極值點(diǎn),考查導(dǎo)數(shù)知識(shí)的運(yùn)用,解題的關(guān)鍵是求得導(dǎo)數(shù)為0的點(diǎn),再利用單調(diào)性確定函數(shù)的極值點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F(0,1),過點(diǎn)F作直線l交拋物線C于A,B兩點(diǎn).橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)F是它的一個(gè)頂點(diǎn),且其離心率$e=\frac{{\sqrt{3}}}{2}$.
(1)分別求拋物線C和橢圓E的方程;
(2)經(jīng)過A,B兩點(diǎn)分別作拋物線C的切線l1,l2,切線l1與l2相交于點(diǎn)M.證明:AB⊥MF;
(3)橢圓E上是否存在一點(diǎn)M′,經(jīng)過點(diǎn)M′作拋物線C的兩條切線M′A′,M′B′(A′,B′為切點(diǎn)),使得直線A′B′過點(diǎn)F?若存在,求出點(diǎn)M′及兩切線方程,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法正確的是(  )
①要得到函數(shù)y=lg(1-x)的圖象,只需將函數(shù)y=lg(-x)的圖象向左平移一個(gè)單位.
②要得到函數(shù)y=lg(1-x)的圖象,只需將函數(shù)y=lg(-x)的圖象向右平移一個(gè)單位.
③要得到函數(shù)y=lg(1-x)的圖象,只需將函數(shù)y=lg(x+1)的圖象關(guān)于y軸做對(duì)稱.
④要得到函數(shù)y=lg(1-x)的圖象,只需將函數(shù)y=lg(x-1)的圖象關(guān)于y軸做對(duì)稱.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若直線y=x+b與曲線$x=\sqrt{1-{y^2}}$有且只有1個(gè)公共點(diǎn),則b的取值不可能是( 。
A.$-\sqrt{2}$B.0C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+6y的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知k∈Z,若曲線x2+y2=k2與曲線xy=k無(wú)交點(diǎn),則k=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=|x+2|-|2x-2|
(1)解不等式f(x)≥-2;
(2)設(shè)g(x)=x-a,對(duì)任意x∈[a,+∞)都有g(shù)(x)≥f(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={2,3},則集合A的子集的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinxcosx,x∈R.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期;
(Ⅲ)求函數(shù)g(x)=f(x)+f(x+$\frac{π}{4}$)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案