12.設(shè)全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},試求A∪B,A∩B,(∁UA)∩B.

分析 通過求函數(shù)的值域化簡集合B,利用集合的交集、并集、補集的定義求出各個集合.

解答 解:由條件得B={y|0<y<5},
從而CUA={x|x≤-1或x≥4},
A∪B={y|-1<y<5},
A∩B={y|0<y<4},
B∩(CUA)={y|4≤y<5}.

點評 本題考查一次函數(shù)的值域的求法、利用集合的交集,補集,并集的定義求交、并、補集.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.某學校從星期一到星期五的大米需求量逐漸增加,前5天的大米需求量統(tǒng)計數(shù)據(jù)如表:
星期x12345
需求量y(單位:kg)236246257276286
為了研究方便,工作人員為此對數(shù)據(jù)進行了處理,t=x-3,z=y-257,得到如表:
時間代號t-2-1012
z-21-1101929
(1)求z關(guān)于t的線性回歸方程;
(2)通過(1)中的方程,求y關(guān)于x的回歸方程;
(3)利用(2)中所求出的回歸方程預測該校星期日的大米需求量.
(附:線性回歸方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{x^{-2}}}}},\hat a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn,點(an,Sn)在函數(shù)y=$\frac{1}{8}$x2+$\frac{1}{2}$x+$\frac{1}{2}$的圖象上,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)cn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等比數(shù)列{an}中,a3,a15是方程x2-6x+1=0的兩根,則a7a8a9a10a11等于( 。
A.-1B.1C.-15D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)x>0,y>0,x+y≤4,則$\frac{1}{x}$+$\frac{1}{y}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.以平面直角坐標系xOy的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,圓C的極坐標方程為ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求直線l的普通方程與圓C的直角坐標系;
(2)設(shè)曲線C與直線l交于A、B兩點,若P點的直角坐標為(2,1),求||PA|-|PB||的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示的幾何體中,四邊形AA1B1B是邊長為3的正方形,CC1=2,CC1∥AA1,這個幾何體是棱柱嗎?若是,指出是幾棱柱.若不是棱柱,請你試用一個平面截去一部分,使剩余部分是一個棱長為2的三棱柱,并指出截去的幾何體的特征,在立體圖中畫出截面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,∠ABC=∠BCD=90°,AB=2,CD=CB=CP=1.點P在底面上的射影為線段BD的中點M.
(Ⅰ)若E為棱PB的中點,求證:CE∥平面PAD;
(Ⅱ)求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.食品安全是關(guān)乎到人民群眾生命的大事.某市質(zhì)檢部門為了解該市甲、乙兩個食品廠生產(chǎn)食品的質(zhì)量,從兩廠生產(chǎn)的食品中分別隨機抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當食品中的此種元素含量不小于18毫克時,該食品為優(yōu)等品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(Ⅱ)從乙廠抽出的上述10件樣品中,隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學期望E(ξ);
(Ⅲ)從甲廠的10件樣品中有放回的隨機抽取3件,也從乙廠的10件樣品中有放回的隨機抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

同步練習冊答案