13.已知{an}為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2n-1+an,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)設(shè)等比數(shù)列{an}的公比為q,運(yùn)用等差數(shù)列的中項(xiàng)的性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得公比q,即可得到所求通項(xiàng)公式;
(2)bn=2n-1+an,=(2n-1)+($\frac{1}{2}$)n-1;運(yùn)用數(shù)列的求和方法:分組求和,即可得到所求和.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
a2,a3+a5,a4成等差數(shù)列,可得
2(a3+a5)=a2+a4,
即有2(q2+q4)=q+q3,
解得q=$\frac{1}{2}$(0舍去),
an=($\frac{1}{2}$)n-1;
(2)bn=2n-1+an,
=(2n-1)+($\frac{1}{2}$)n-1
前n項(xiàng)和Tn=(1+3+5+…+2n-1)+[1+$\frac{1}{2}$+…+($\frac{1}{2}$)n-1]
=$\frac{1}{2}$(1+2n-1)n+$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$
=n2+2-21-n

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.經(jīng)過(guò)圓x2+y2-2x+2y=0的圓心且與直線2x-y=0平行的直線方程是(  )
A.2x-y-3=0B.2x-y-1=0C.2x-y+3=0D.x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.正方體ABCD-A′B′C′D′中,<$\overrightarrow{A′B}$,$\overrightarrow{B′D′}$>=( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解不等式組:$\left\{\begin{array}{l}{|2x-1|≤x}\\{\frac{x+4}{3}≤\frac{3x+1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.函數(shù)f(x)=-cos2x-2asinx+a,在區(qū)間[0,π]上有最小值-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知$\overrightarrow{a}$=(1,1,0),$\overrightarrow$=(0,1,1),$\overrightarrow{c}$=(1,0,1),$\overrightarrow{p}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{q}$=$\overrightarrow{a}$+2$\overrightarrow$-$\overrightarrow{c}$,求$\overrightarrow{p}$,$\overrightarrow{q}$,$\overrightarrow{p}$•$\overrightarrow{q}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知命題p:不等式x2+8x+4≥ax在R上恒成立,命題q:方程ax2+6x+1=0有負(fù)根
(])若p為真,求a的取值范圍;
(2)若q為真,求a的取值范圍;
(3)若“p且q”為假,“p或q”為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.四個(gè)數(shù)2.40.8,3.60.8,log0.34.2,log0.40.5的大小關(guān)系為( 。
A.3.60.8>log0.40.5>2.40.8log0.34.2
B.3.60.8>2.40.8log0.34.2>log0.40.5
C.log0.40.5>2.40.83.60.8log0.34.2
D.3.60.8>2.40.8log0.40.5>log0.34.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知△ABC的三個(gè)角A,B,C所對(duì)的邊分別是a,b,c,且3bcosA-3acosB=c,則下列結(jié)論正確的是( 。
A.tanB=2tanAB.tanA=2tanBC.tanB•tanA=2D.tanA+tanB=2

查看答案和解析>>

同步練習(xí)冊(cè)答案