14.已知m,n是兩條不同的直線,α,β是兩個不同平面,則以下命題不成立的是(1)(2)(4)
(1)若α∥β,m?α,n?β,則 m∥n
(2)若m∥β,β⊥α,則 m⊥α
(3)若m⊥α,m?β,則 α⊥β
(4)若m∥α,n∥β,m∥n,則 α∥β

分析 在(1)中,m與n平面或異面;在(2)中,m與α相交、平行或m?α;在(3)中,由面面垂直的判定定理得α⊥β;在(4)中,α與β相交或平行.

解答 解:由m,n是兩條不同的直線,α,β是兩個不同平面,知:
在(1)中,若α∥β,m?α,n?β,則 m與n平面或異面,故(1)錯誤;
在(2)中,若m∥β,β⊥α,則 m與α相交、平行或m?α,故(2)錯誤;
在(3)中,若m⊥α,m?β,則由面面垂直的判定定理得α⊥β,故(3)正確;
在(4)中,若m∥α,n∥β,m∥n,則 α與β相交或平行,故(4)錯誤.
故答案為:(1)(2)(4).

點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖都是斜邊長為2的直角三角形,俯視圖是半徑為1的$\frac{1}{4}$圓周和兩條半徑,則這個幾何體的體積為( 。
A.$\frac{\sqrt{3}}{12}$πB.$\frac{\sqrt{3}}{6}$πC.$\frac{\sqrt{3}}{4}$πD.$\frac{\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在Rt△ABC中,C為直角,A,B,C所對的邊的長分別為a,b,c,則c2=a2+b2,類比在三棱錐中有何結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=mx2-2x+3,對任意x1,x2∈[-2,+∞)滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則實數(shù)m的取值范圍[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在《九章算術(shù)》方田章圓田術(shù)(劉徽注)中指出:,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表無限次重復(fù),但原式卻是個定值x,這可以通過方程$\sqrt{2+x}$確定出來x=2,類似地不難得到1+$\frac{1}{1+\frac{1}{1+…}}$=$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對數(shù)函數(shù)f(x)的圖象過點(3,-2),則f($\sqrt{3}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.規(guī)定記號“*”表示一種運算,a*b=a2+ab,設(shè)函數(shù)f(x)=x*2,且關(guān)于x的方程f(x)=ln|x+1|(x≠-1)恰有4個互不相等的實數(shù)根x1,x2,x3,x4,則x1+x2+x3+x4=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{x}{2x+1}$,數(shù)列{an}滿足a1=f(1),an+1=f(an)(n∈N*).則數(shù)列{an}的通項公式an=$\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,正方體ABCD-A′B′C′D′,直線D′A與DB所成的角為60°.

查看答案和解析>>

同步練習(xí)冊答案