6.已知集合U={0,1,2,3,4},A={0,1,2,3},B={0,2,4},那么A∩(∁UB)等于( 。
A.{1}B.{0,1}C.{1,3}D.{0,1,2,3}

分析 先求出(∁UB),再根據(jù)交集的運算法則計算即可

解答 解:∵U={0,1,2,3,4},A={0,1,2,3},B={0,2,4},
∴(∁UB)={1,3}
∴A∩(∁UB)={1,3}
故選:C.

點評 本題考查集合的交并補運算,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=1,且an+1=$\sqrt{{a}_{n}^{2}+1}$(n∈N*).
(1)求數(shù)列{an}的通項an
(2)設(shè)bn=$\frac{1}{(n+1){a}_{n}+n{a}_{n+1}}$,(n∈N*),求數(shù)列{bn}的前n項和Tn;
(3)設(shè)數(shù)列{cn},滿足c1=2,cn+1=cn+$\frac{1}{{c}_{n}}$(n∈N*),證明cn>a2n+1對一切正整數(shù)n成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)當(dāng)0<a<1時,求證:函數(shù)f(x)在(-∞,0)上單調(diào)遞減;
(2)若函數(shù)y=|f(x)-t|-1有三個零點,求t的值;
(3)對于任意x1,x2∈[-1,1]都有,|f(x1)-f(x2)≤e-1,試求a的取值范圍.|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和Sn,且滿足${S_{n+1}}={n^2}-n$,則a1=( 。
A.4B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.求值:$\frac{tan49°+tan11°}{1-tan49°tan11°}$=( 。
A.tan 38°B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x),對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),當(dāng)x>0時,f(x)<0,且$f(1)=-\frac{1}{2}$.
(Ⅰ) 求f(0),f(3)的值;
(Ⅱ) 當(dāng)-8≤x≤10時,求函數(shù)f(x)的最大值和最小值;
(Ⅲ) 設(shè)函數(shù)g(x)=f(x2-m)-2f(|x|),判斷函數(shù)g(x)最多有幾個零點,并求出此時實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過拋物線y2=8x的焦點且傾斜角為45°直線l,交拋物線于A,B兩點,則弦AB的長為(  )
A.8B.16C.24D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知三角形的三個頂點A(4,6),B(-3,0),C(-1,-4),求BC邊上中線和高線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x<-1}\\{ln(x+c),x≥-1}\end{array}\right.$的圖象如圖所示,則a+b+c等于(  )
A.6B.7C.-2D.-1

查看答案和解析>>

同步練習(xí)冊答案