分析 (1)求導(dǎo)函數(shù),確定f′(x)<0,故函數(shù)f(x)在(-∞,0)上單調(diào)遞減.
(2)函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),
∴f(x)=t±1共有三個(gè)根,即y=f(x)的圖象與兩條平行于x軸的直線y=t±1共有三個(gè)交點(diǎn),即可解出t的值;
(3)問題等價(jià)于f(x)在[-1,1]的最大值與最小值之差≤e-1,即可求出a的取值范圍.
解答 (1)證明:∵f(x)=ax+x2-xlna,
∴求導(dǎo)函數(shù),可得f′(x)=axlna+2x-lna=2x+(ax-1)lna,
由于0<a<1,
∴l(xiāng)na<0,當(dāng)x<0時(shí),ax-1>0,
∴f′(x)<0,故函數(shù)f(x)在(-∞,0)上單調(diào)遞減;
(2)解:由|f(x)-t|-1=0,
得:f(x)=t-1,或f(x)=t+1,
∵函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),
∴f(x)=t±1共有三個(gè)根,即y=f(x)的圖象與兩條平行于x軸的直線y=t±1共有三個(gè)交點(diǎn).
不妨取a>1,y=f(x)在(-∞,0)遞減,在(0,+∞)遞增,極小值f(0)=1也是最小值,當(dāng)x→±∞時(shí),f(x)→+∞.
∵t-1<t+1,∴f(x)=t+1有兩個(gè)根,f(x)=t-1只有一個(gè)根.
∴t-1=fmin(x)=f(0)=1,∴t=2;
(3)問題等價(jià)于f(x)在[-1,1]的最大值與最小值之差≤e-1.
由(2)可知f(x)在[-1,0]上遞減,在[0,1]上遞增,
∴f(x)的最小值為f(0)=1,最大值等于f(-1),f(1)中較大的一個(gè),
f(-1)=$\frac{1}{a}$+1+lna,f(1)=a+1-lna,f(1)-f(-1)=a-$\frac{1}{a}$-2lna,
記g(x)=x-$\frac{1}{x}$-2lnx,(x≥1),則g′(x)=($\frac{1}{x}$-1)2≥0(僅在x=1時(shí)取等號(hào))
∴g(x)=x-$\frac{1}{x}$-2lnx是增函數(shù),
∴當(dāng)a>1時(shí),g(a)=a-$\frac{1}{a}$-2lna>g(1)=0,
即f(1)-f(-1)>0,∴f(1)>f(-1),
于是f(x)的最大值為f(1)=a+1-lna,
故對(duì)?x1,x2∈[-1,1],|f(x1)-f(x2)|≤|f(1)-f(0)|=a-lna,∴a-lna≤e-1,
當(dāng)x≥1時(shí),(x-lnx)′=$\frac{x-1}{x}$≥0,∴y=x-lnx在[1,+∞)單調(diào)遞增,
∴由a-lna≤e-1可得a的取值范圍是1<a≤e.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的零點(diǎn),考查恒成立問題,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是利用導(dǎo)數(shù)確定函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,3x≤2x | B. | ?x∉R,3x<2x | C. | ?x0∈R,3x0≤2x0 | D. | ?x0∉R,3x0<2x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {0,1} | C. | {1,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com