15.設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x≤π時(shí),f(x)=0.則f($\frac{23π}{6}$)=$\frac{1}{2}$.

分析 由題意,利用迭代法化簡(jiǎn)f($\frac{23π}{6}$)=f($\frac{17π}{6}$)+sin($\frac{17π}{6}$)=…═f($\frac{5π}{6}$)+sin($\frac{5π}{6}$)+sin($\frac{11π}{6}$)+sin($\frac{17π}{6}$),從而解得.

解答 解:∵f(x+π)=f(x)+sinx,
∴f($\frac{23π}{6}$)=f($\frac{17π}{6}$)+sin($\frac{17π}{6}$)
=f($\frac{11π}{6}$)+sin($\frac{11π}{6}$)+sin($\frac{17π}{6}$)
=f($\frac{5π}{6}$)+sin($\frac{5π}{6}$)+sin($\frac{11π}{6}$)+sin($\frac{17π}{6}$)
=0+2sin($\frac{5π}{6}$)+sin($\frac{11π}{6}$)
=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了迭代法的應(yīng)用及抽象函數(shù)的性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在平行四邊形ABCD中,∠ABD=90°,2AB2+BD2=4,若將其沿BD折成直二面角A-BD-C,則三棱錐A-BCD的外接球的表面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列,求數(shù)列$\{\frac{1}{d_n}\}$的前n項(xiàng)和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)y=a+sinx在區(qū)間[π,2π]上有且只有一個(gè)零點(diǎn),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x≥y\\ 2x-y≤1\end{array}\right.$,則${8^x}•{(\frac{1}{4})^{-y}}$的最大值是(  )
A.64B.32C.2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點(diǎn)N(2,0),圓M:(x+2)2+y2=36,點(diǎn)A是圓M上一個(gè)動(dòng)點(diǎn),線段AN的垂直平分線交AM于點(diǎn)P,則點(diǎn)P的軌跡方程是$\frac{x^2}{9}+\frac{y^2}{5}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)$z=\frac{{{{(1-i)}^2}}}{1+i}$(i為虛數(shù)單位),則復(fù)數(shù)z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)y=f (x)的定義域?yàn)镈,如果存在非零常數(shù)T,對(duì)于任意 x∈D,都有f(x+T)=T•f (x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f( x)的“似周期”.現(xiàn)有下面四個(gè)關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為-1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號(hào)是①④.(寫出所有滿足條件的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=4${\;}^{x-\frac{1}{2}}$+2x+1-1
(1)判斷函數(shù)f(x)在定義域上的單調(diào)性,并證明;
(2)若對(duì)任意t∈R,不等式f(t2-2t)>f(k-2t2)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案