16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(-1,0),直線l與曲線C交于A、B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C普通方程;
(2)線段MA,MB長度分別記為|MA|,|MB|,求|MA|•|MB|的值.

分析 (1)先求出直線l的普通方程,再求出直線l的極坐標(biāo)方程,曲線C的極坐標(biāo)方程是ρ2cos2θ=ρsinθ,由此能求出曲線C普通方程.
(2)將$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$代入y=x2,能求出|MA|•|MB|的值.

解答 解:(1)∵直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),
∴直線l的普通方程為:x-y+1=0,
∴直線l的極坐標(biāo)方程為:ρcosθ-ρsinθ+1=0,即$\sqrt{2}ρcos({θ+\frac{π}{4}})=-1$,…(3分)
∵曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,∴ρ2cos2θ=ρsinθ,
∴曲線C普通方程為:y=x2…(5分)
(2)將$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$代入y=x2
得${t^2}-3\sqrt{2}t+2=0$,…8分
∴|MA|•|MB|=|t1t2|=2.…(10分)

點(diǎn)評(píng) 本題考查直線l的極坐標(biāo)方程與曲線C普通方程的求法|,考查|MA|•|MB|的值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意極坐標(biāo)和直角坐標(biāo)互化公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)-$\frac{1}{2016}$(0≤x≤$\frac{4π}{3}$)的零點(diǎn)為x1,x2,x3(x1<x2<x3),則$\frac{cos({x}_{1}+{x}_{2})}{sin({x}_{2}+{x}_{3})}$=( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是一個(gè)程序框圖,則輸出的n的值是 ( 。
A.29B.31C.61D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位,則曲線${C_1}:{ρ^2}-2ρcosθ-1=0$上的點(diǎn)到曲線C2:$\left\{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}\right.$(t為參數(shù))上的點(diǎn)的最短距離為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示,直角梯形ABCD(單位cm),ADE為扇形,則圖中陰影部分繞AB所在直線旋轉(zhuǎn)一周所形成的幾何體體積64πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.拋物線${x^2}=\frac{1}{4}y$的焦點(diǎn)到準(zhǔn)線的距離為(  )
A.2B.4C.$\frac{1}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知三角形的面積s=$\frac{1}{2}$c•r,其中c為三角形的周長,r為三角形內(nèi)切圓半徑,類比這一結(jié)論,用于研究三棱錐的體積,若三棱錐A-BCD的表面積為6,其內(nèi)切球的表面積為4π,則三棱錐A-BCD的體積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2(sin$\frac{π}{4}x+cos\frac{π}{4}x$)•cos$\frac{π}{4}x$-1.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[-1,1]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的高為2,底面邊長為2,則該球的表面積為9π.

查看答案和解析>>

同步練習(xí)冊答案