7.如圖是一個(gè)程序框圖,則輸出的n的值是 (  )
A.29B.31C.61D.63

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過(guò)程,即可得出輸出的n值.

解答 解:模擬執(zhí)行程序框圖,可得
p=5,n=1
p=9,n=3
不滿足條件log${\;}_{p}^{n}$>1,p=15,n=7
不滿足條件log${\;}_{p}^{n}$>1,p=23,n=15
不滿足條件log${\;}_{p}^{n}$>1,p=31,n=31
不滿足條件log${\;}_{p}^{n}$>1,p=31,n=63
滿足條件log${\;}_{p}^{n}$>1,退出循環(huán),輸出n的值為63.
故選:D.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)果,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=$\left\{\begin{array}{l}{x(x-b),x≥0}\\{ax(x+2),x<0}\end{array}\right.$(a,b∈R)為奇函數(shù),則f(a+b)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某房地產(chǎn)公司在2010,對(duì)某戶型推出兩種售房方案:第一種是一次性付款方案,購(gòu)房的優(yōu)惠價(jià)為28.5萬(wàn)元;第二種是分期付款方式,要求購(gòu)房時(shí)繳納首付款10萬(wàn)元,然后從第二年起連續(xù)十年,在每年的購(gòu)房日向銀行付款2.25萬(wàn)元.假設(shè)在此期間銀行存款的年利率為3%,若不考慮其他因素,試問(wèn):對(duì)于購(gòu)房者來(lái)說(shuō),采用哪種方案省錢?請(qǐng)計(jì)算說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.(1)函數(shù)$y=ln(x-2)+\sqrt{3-x}$的定義域(2,3].
(2)方程${2^{2x-1}}=\frac{1}{4}$的解x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知正項(xiàng)數(shù)列{an}滿足a${\;}_{n+1}^{2}$=9an2,若a5a6=8,則a4a7+a5a7=( 。
A.32B.80C.-16或32D.-64或80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在極坐標(biāo)系Ox中,曲線C的極坐標(biāo)方程為p2=$\frac{144}{9+7si{n}^{2}θ}$,以極點(diǎn)O為直角坐標(biāo)原點(diǎn)、極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C與x軸、y軸的正半軸分別交于點(diǎn)A、B,P是曲線C上一點(diǎn),求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(Ⅰ)直線l的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點(diǎn)的極坐標(biāo)(其中ρ≥0,0≤θ≤2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(-1,0),直線l與曲線C交于A、B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C普通方程;
(2)線段MA,MB長(zhǎng)度分別記為|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,點(diǎn)M是以F為焦點(diǎn)的拋物線x2=8y上一點(diǎn),若∠MFy=60°,則|FM|=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案