20.一彈性小球從100m高處自由落下,每次著地后又跳回原來高度的$\frac{2}{3}$再落下,設(shè)它第n次著地時(shí),共經(jīng)過了Sn,則當(dāng)n≥2時(shí),有( 。
A.Sn的最小值為100B.Sn的最大值為400C.Sn<500D.Sn≤500

分析 由已知條件利用等比數(shù)列性質(zhì)推導(dǎo)出第n次著地時(shí)共經(jīng)過了$100+100×\frac{2}{3}×2+100×{(\frac{2}{3})^2}×2+…+100×{(\frac{2}{3})^{n-1}}×2$米,由題意Sn是關(guān)于n的單調(diào)增函數(shù),由此能求出結(jié)果.

解答 解:第一次著地時(shí),經(jīng)過了100米,
第二次著地時(shí)共經(jīng)過了$100+100×\frac{2}{3}×2$米,
第三次著地時(shí)共經(jīng)過了$100+100×\frac{2}{3}×2+100×{(\frac{2}{3})^2}×2$米,

以此類推,第n次著地時(shí)共經(jīng)過了$100+100×\frac{2}{3}×2+100×{(\frac{2}{3})^2}×2+…+100×{(\frac{2}{3})^{n-1}}×2$米,
∴${S_n}=100+100×\frac{2}{3}×2+100×{(\frac{2}{3})^2}×2+…+100×{(\frac{2}{3})^{n-1}}×2$
=$100+\frac{{\frac{400}{3}[1-{{(\frac{2}{3})}^{n-1}}]}}{{1-\frac{2}{3}}}=100+400[1-{(\frac{2}{3})^{n-1}}]$,
由題意Sn是關(guān)于n的單調(diào)增函數(shù),
∴當(dāng)n=2時(shí),Sn取得最小值${S_2}=\frac{700}{3}$,且Sn<100+400=500.
故選:C.

點(diǎn)評 本題考查數(shù)列的前n項(xiàng)和的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且|$\overrightarrow a$|=4,|$\overrightarrow b$|=2,
(1)求$\overrightarrow a$•$\overrightarrow b$;
(2)求|3$\overrightarrow a$+5$\overrightarrow b$|;
(3)若向量$\overrightarrow a$+k$\overrightarrow b$與5$\overrightarrow a$+2$\overrightarrow b$垂直,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中正確命題的個(gè)數(shù)是( 。
(1)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p;
(2)在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù),則事件“tanxcosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$;
(3)兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r越接近1;
(4)f(x)=|sinx|+|cosx|,則f(x)的最小正周期是π.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了了解大學(xué)生觀看某電視節(jié)目是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機(jī)抽取了50人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進(jìn)行重點(diǎn)分析,知道其中喜歡看該節(jié)目的有6人.
  喜歡看該節(jié)目 不喜歡看該節(jié)目 合計(jì)
 女生  5 
 男生 10  
 合計(jì)   50
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜歡看該節(jié)目與性別有關(guān)?說明你的理由;
(3)已知喜歡看該節(jié)目的10位男生中,A1、A2、A3、A4、A5還喜歡看新聞,B1、B2、B3還喜歡看動畫片,C1、C2還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.0050. 001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題p:a=-1;命題q:直線ax+y+1=0與直線x+ay+2a-1=0平行,則p是q( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{{1-\frac{1}{2}i}}{{1+\frac{1}{2}i}}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$-$\frac{3}{5}$iD.$\frac{4}{5}$+$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=ln(5x-125)的定義域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個(gè)單位長度,所得圖象對應(yīng)的函數(shù)( 。
A.在區(qū)間[-$\frac{π}{12}$,$\frac{5}{12}$π]上單調(diào)遞增B.在區(qū)間[$\frac{π}{4},\frac{π}{4}$]上單調(diào)遞增
C.在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{12}$,$\frac{5}{12}$π]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若(mx+y)6展開式中x3y3的系數(shù)為-160,則m=-2.

查看答案和解析>>

同步練習(xí)冊答案