9.對于函數(shù)f(x)=1og${\;}_{\frac{1}{2}}$(x+a).
(1)若函數(shù)的定義域為(-1,∞),求實數(shù)a;
(2)若a=1,解不等式f(x)>0.

分析 (1)求解函數(shù)的定義域,結(jié)合函數(shù)的定義域為(-1,+∞)可得a的值;
(2)直接求解對數(shù)不等式得答案.

解答 解:(1)由x+a>0,得x>-a,
又函數(shù)f(x)=1og${\;}_{\frac{1}{2}}$(x+a)的定義域為(-1,∞),
∴-a=-1,即a=1;
(2)當a=1時,不等式f(x)>0化為1og${\;}_{\frac{1}{2}}$(x+1)>0,
即0<x+1<1,解得-1<x<0.
∴不等式f(x)>0的解集為(-1,0).

點評 本題考查函數(shù)的定義域及其求法,考查了對數(shù)不等式的解法,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,$∠AOB=\frac{2π}{3}$,$\overrightarrow{OP}$=$2\overrightarrow{OA}+t\overrightarrow{OB}$,則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍$(-\frac{1}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.(文)函數(shù)y=cos2ax-sin2ax的最小正周期為π,則a的值是±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}的前n項的和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(1)求{an}的通項公式an
(2)當n≥2時,an+1+$\frac{λ}{{a}_{n}}$≥λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在三棱臺A1B1C1-ABC中,點D在A1B1上,且AA1∥BD,點M是△A1B1C1內(nèi)(含邊界)的一個動點,且有平面BDM∥平面A1C,則動點M的軌跡是(  )
A.平面B.直線
C.線段,但只含1個端點D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知cos(α+β)cosα+sin(α+β)sinα=$\frac{1}{3}$,β∈($\frac{3π}{2}$,2π),求cos(β-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知實數(shù)a,b,c,d滿足$\frac{2+5alna}{2{a}^{2}-ab}$=$\frac{{c}^{2}-mc}{d-4}$=1,在直角坐標系中,點(a,b)和(c,d)的軌跡方程分別為y=f(x),y=g(x),若?x1∈(0,1),?x2∈[1,2],郡有f(x1)≥g(x2)成立,則實數(shù)m的最小值為(  )
A.$\frac{11-5ln2}{2}$B.2C.8-5ln2D.7-5ln2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設三棱錐的三條側(cè)棱兩兩互相垂直,且長度分別為2,2$\sqrt{3}$,4,則其外接球的表面積為( 。
A.48πB.32πC.20πD.12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知a+a-1=m,則$\frac{{a}^{2}+1}{a}$的值是m.

查看答案和解析>>

同步練習冊答案