分析 (1)利用遞推關(guān)系即可得出;
(2)變形利用基本不等式的性質(zhì)即可得出.
解答 解:(1)∵Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n,
∴當(dāng)n=1時(shí),a1=$\frac{3}{2}-\frac{1}{2}$=1;
當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{3}{2}$n2-$\frac{1}{2}$n-$[\frac{3}{2}(n-1)^{2}-\frac{1}{2}(n-1)]$=3n-2.
當(dāng)n=1時(shí),上式成立,∴an=3n-2.
(2)an+1+$\frac{λ}{{a}_{n}}$≥λ,即3n+1+$\frac{λ}{3n-2}$≥λ,化為:λ≤$\frac{1}{3}$$[9(n-1)+\frac{4}{n-1}+15]$,
∵當(dāng)n≥2時(shí),an+1+$\frac{λ}{{a}_{n}}$≥λ恒成立,
∴λ≤$\frac{1}{3}[9(n-1)+\frac{4}{n-1}+15]_{min}$,
∵$[9(n-1)+\frac{4}{n-1}+15]$≥$2\sqrt{9(n-1)×\frac{4}{n-1}}$+15,
取整數(shù)n=2時(shí),$\frac{1}{3}[9(n-1)+\frac{4}{n-1}+15]_{min}$=$\frac{28}{3}$.
∴λ≤$\frac{28}{3}$.
∴實(shí)數(shù)λ的取值范圍是λ≤$\frac{28}{3}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、數(shù)列的單調(diào)性、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ③④ | B. | ①② | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | d(∫f(x)dx)=f(x)dx | B. | ∫f(x)dx=∫f(u)du | ||
C. | ${∫}_{a}^$f(x)dx=${∫}_{a}^$f(u)du | D. | ${∫}_{a}^$f(x)dx+${∫}_^{a}$f(x)dx=0. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com