分析 先構(gòu)造函數(shù)f(x)=lnx,g(x)=ln2x,由于當(dāng)x∈[3,4]時(shí),有f(x)<g(x)在x∈[3,4]恒成立,所以可以得出${∫}_{3}^{4}$lnxdx<${∫}_{3}^{4}$ln2xdx.
解答 解:設(shè)f(x)=lnx,g(x)=ln2x,
當(dāng)x∈[3,4]時(shí),lnx≥ln3>lne=1,
因此,ln2x>lnx在x∈[3,4]恒成立,
即f(x)<g(x)在x∈[3,4]恒成立,
根據(jù)定積分的以及意義可知,
${∫}_{3}^{4}$f(x)dx<${∫}_{3}^{4}$g(x)dx,
即${∫}_{3}^{4}$lnxdx<${∫}_{3}^{4}$ln2xdx,
故答案為:${∫}_{3}^{4}$lnxdx<${∫}_{3}^{4}$ln2xdx.
點(diǎn)評 本題主要考查了定積分及其運(yùn)算,涉及定積分的幾何意義和大小關(guān)系的比較,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$ | B. | f(0.76)<f(60.5)<f(log0.76) | ||
C. | $f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$ | D. | $f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | -$\frac{15}{4}$ | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com