19.復(fù)數(shù)z=$\frac{-i}{4+i}$(其中i為虛數(shù)單位)的虛部為( 。
A.-$\frac{1}{17}$B.$\frac{4}{17}$C.-$\frac{4}{17}$iD.-$\frac{4}{17}$

分析 利用復(fù)數(shù)的除法運(yùn)算法則化簡復(fù)數(shù)為a+bi的形式,即可得到結(jié)果.

解答 解:復(fù)數(shù)z=$\frac{-i}{4+i}$=$\frac{-i(4-i)}{(4+i)(4-i)}$=$\frac{-1-4i}{17}$=$-\frac{1}{17}-\frac{4}{17}i$.
復(fù)數(shù)z=$\frac{-i}{4+i}$(其中i為虛數(shù)單位)的虛部為:-$\frac{4}{17}$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,復(fù)數(shù)的基本概念的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)關(guān)于x的實(shí)系數(shù)不等式(ax+3)(x2-b)≤0對任意x∈[0,+∞)恒成立,則a2b=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知曲線4x2-m2y2=1(m>0)的一個(gè)頂點(diǎn)到它的一條漸近線的距離為$\frac{\sqrt{5}}{5}$,則雙曲線的焦距為( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F作一條漸近線的垂線,與C右支交于點(diǎn)A,若|OF|=|OA|.則C的離心率為( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)0的定義域?yàn)閧x|-3<x<2且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知三角形的三個(gè)頂點(diǎn)A(-4,0),B(0,-3),C(-2,1).求:
(1)BC邊所在的直線方程;
(2)BC邊上中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x∈[1,8],求函數(shù)g(x)=(${log}_{2}\frac{x}{2}$)(${log}_{2}\frac{x}{4}$)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的導(dǎo)數(shù)
(1)y=sin(2x+1);
(2)y=$\sqrt{3x+5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列變量中,不是隨機(jī)變量的是( 。
A.擲一枚骰子,所得的點(diǎn)數(shù)B.一射手射擊一次,擊中的環(huán)數(shù)
C.某日上證收盤指數(shù)D.標(biāo)準(zhǔn)狀態(tài)下,水在100℃時(shí)會(huì)沸騰

查看答案和解析>>

同步練習(xí)冊答案