19.已知直線l1:2x-y-4=0與直線l2:x+y-2=0相交于點(diǎn)P,求:
(1)以點(diǎn)P為圓心,半徑為1的圓C的方程;
(2)在(1)的條件下,過(guò)點(diǎn)M(1,3)的直線l與圓C相切,求直線l的方程.

分析 (1)聯(lián)立方程組求出公共解,求出P的坐標(biāo),結(jié)合圓的標(biāo)準(zhǔn)方程即可得到結(jié)論.
(2)設(shè)出直線的斜率,利用直線和圓相切的等價(jià)條件進(jìn)行求解即可求直線l的方程.

解答 解:(1)由$\left\{\begin{array}{l}{2x-y-4=0}\\{x+y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即P(2,0),
則以點(diǎn)P為圓心,半徑為1的圓C的方程為(x-2)2+y2=1;
(2)在(1)的條件下,過(guò)點(diǎn)M(1,3)的直線l與圓C相切,
若直線斜率不存在,則此時(shí)直線方程為x=1,圓心到直線x=1的距離d=2-1=1,此時(shí)直線和圓相切,滿足條件,
若直線斜率k存在,則此時(shí)直線方程為y-3=k(x-1),
即kx-y+3-k=0,
圓心到直線kx-y+3-k=0的距離d=$\frac{|2k+3-k|}{\sqrt{1+{k}^{2}}}$=$\frac{|k+3|}{\sqrt{1+{k}^{2}}}$=1,
平方得k2+6k+9=1+k2,
即6k=-8,得k=-$\frac{8}{6}$=-$\frac{4}{3}$,
則此時(shí)直線的方程為-$\frac{4}{3}$x-y+3-(-$\frac{4}{3}$)=0,即4x+3y-13=0,
綜上直線l的方程為4x+3y-13=0或x=1.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程以及直線和圓的位置關(guān)系的應(yīng)用,根據(jù)直線相切轉(zhuǎn)化為圓心到直線的距離等于半徑是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.過(guò)點(diǎn)M(0,0),且平行于向量$\overrightarrow{a}$=(1,2)的直線方程是(  )
A.x-2y=0B.x+2y=0C.2x+y=0D.2x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若tan(α+$\frac{π}{4}$)=3+2$\sqrt{2}$,則$\frac{1-cos2α}{sin2α}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合P={x|6<x<8},Q={x|x∈N},則P∩Q等于( 。
A.{7}B.{6,7}C.{6,7,8}D.{x|6<x<8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法中正確的是(  )
A.向量$\overrightarrow{a}$與非零向量$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$共線
B.任意兩個(gè)相等向量不一定是共線向量
C.任意兩個(gè)共線向量相等
D.若向量$\overrightarrow{a}$與$\overrightarrow$共線,則$\overrightarrow{a}$=λ$\overrightarrow$(λ>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了調(diào)查一款項(xiàng)鏈的銷售數(shù)量x(件)與銷售利潤(rùn)y(萬(wàn)元)之間的相關(guān)關(guān)系,某公司的市場(chǎng)專員作出調(diào)查并將結(jié)果統(tǒng)計(jì)如表所示:
x(件) 3 4 5 6 8 10
 y(萬(wàn)元) 3 2 4 78
(Ⅰ)請(qǐng)?jiān)谙铝凶鴺?biāo)紙中作出x,y的散點(diǎn)圖;
(Ⅱ)若某同學(xué)根據(jù)如表中的數(shù)據(jù)(6,6)和(8,7)求得的直線方程為y=b′x+a′,請(qǐng)根據(jù)上表數(shù)據(jù)計(jì)算x,y的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并比較$\widehat$與b′以及$\widehat{a}$與a′的大小關(guān)系.
(注,$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\underset{\stackrel{n}{∑}}{i=1}x}_{i}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=$\frac{\sqrt{x+2}}{x}$的定義域?yàn)閇-2,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知點(diǎn)A(1,1)在矩陣$M=[{\begin{array}{l}1&a\\ 0&b\end{array}}]$對(duì)應(yīng)的變換作用下得到點(diǎn)B(1,2),點(diǎn)B在矩陣$N=[{\begin{array}{l}m&{-1}\\ n&0\end{array}}]$對(duì)應(yīng)的變換作用下得到點(diǎn)C(-2,1),求矩陣MN的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.冪函數(shù)f(x)=xα過(guò)點(diǎn)(2,4),則定積分$\int\begin{array}{l}1\\-1\end{array}f(x)dx$=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案