10.已知a=40.3,b=8${\;}^{\frac{1}{4}}$,c=30.75,這三個數(shù)的大小關(guān)系為( 。
A.b<a<cB.c<a<bC.a<b<cD.c<b<a

分析 根據(jù)冪的運(yùn)算法則與指數(shù)函數(shù)的圖象與性質(zhì),對a、b、c的大小進(jìn)行比較即可.

解答 解:a=40.3=20.6,b=8${\;}^{\frac{1}{4}}$=${2}^{\frac{3}{4}}$=20.75,
且20.6<20.75,
∴a<b;
又c=30.75
且20.75<30.75,
∴b<c;
∴a、b、c的大小關(guān)系為:a<b<c.
故選:C.

點評 本題考查了冪的運(yùn)算法則與指數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,M為SD的中點,AN⊥SC,且交SC于點N.   
(Ⅰ)求證:SB∥平面ACN;
(Ⅱ)求證:SC⊥平面AMN;
(Ⅲ)求AC與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知O是△ABC內(nèi)一點,$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow 0$,則△AOB的面積與△ABC的面積之比為( 。
A.1:4B.2:3C.1:3D.1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知條件p:f(x)=x2+mx+1在區(qū)間($\frac{1}{2}$,+∞)上單調(diào)遞增,條件q:m≥-$\frac{4}{3}$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.i是虛數(shù)單位,復(fù)數(shù)z滿足(z-2i)(2-i)=5,則z=2+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,F(xiàn)D=3,求證:MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,c=2,acosC=csinA,若當(dāng)a=x0時的△ABC有兩解,則x0的取值范圍是( 。
A.(1,2)B.(1,$\sqrt{3}$)C.($\sqrt{2}$,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右準(zhǔn)線l與兩條漸近線交于P、Q兩點,如果△PQF是等邊三角形,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x|,g(x)=-|x-4|+m.
(1)解關(guān)于x的不等式g[f(x)]+3-m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案