10.已知數(shù)列{an}對任意p,q∈N+滿足ap+q=ap+aq,且a2=-6,那么a4=-12.

分析 利用ap+q=ap+aq,可得a4=a2+2=a2+a2

解答 解:∵數(shù)列{an}對任意p,q∈N+滿足ap+q=ap+aq,且a2=-6,
那么a4=a2+2=a2+a2=-12.
故答案為:-12.

點評 本題考查了遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標系xOy中,已知△ABC的頂點B、C恰好是雙曲線M:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦點,且頂點A在雙曲線M的右支上,則$\frac{sinC-sinB}{sinA}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,點E為線段AB上異于A,B的點,且EF∥AD,沿EF將面EBCF折起,使平面EBCF⊥平面AEFD,如圖2.
(Ⅰ)求證:AB∥平面DFC;
(Ⅱ)當三棱錐F-ABE體積最大時,求鈍二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α、β、γ是不同的平面,m,n是不同的直線,則由下列條件能得出m⊥β的是( 。
A.n⊥α,n⊥β,m⊥αB.α∩β=m,α⊥β,β⊥γC.m⊥n,n?βD.α⊥β,α∩β=n,m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若${C}_{8}^{x}$=${C}_{8}^{2x-1}$,則x的值為1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的點關(guān)于實軸對稱,z1=1+i,則$\frac{z_1}{z_2}$=( 。
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用反證法證明命題:“已知x∈R,a=x2-1,b=2x+2,則a,b中至少有一個不小于0”,反設(shè)正確的是( 。
A.假設(shè)a,b都不大于0B.假設(shè)a,b至多有一個大于0
C.假設(shè)a,b都大于0D.假設(shè)a,b都小于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有30袋長富牛奶,編號為1至30,若從中抽取6袋進行檢驗,則用系統(tǒng)抽樣確定所抽的編號為( 。
A.3,6,9,12,15,18B.4,8,12,16,20,24
C.2,7,12,17,22,27D.6,10,14,18,22,26

查看答案和解析>>

同步練習(xí)冊答案