6.命題p:存在${x_0}∈R,mx_0^2+1<1$,q:對?x∈R,x2+mx+1≥0,當p∨(?q)為假命題,則實數(shù)m的取值范圍是[-2,2].

分析 命題p:存在${x_0}∈R,mx_0^2+1<1$,化為$m{x}_{0}^{2}$<0,m∈∅.可得¬p:m∈R.q:對?x∈R,x2+mx+1≥0,△≤0.由p∨(?q)為假命題,可得¬p為假命題,q為真命題.

解答 解:命題p:存在${x_0}∈R,mx_0^2+1<1$,
化為$m{x}_{0}^{2}$<0,m∈∅.
∴¬p:m∈R.
q:對?x∈R,x2+mx+1≥0,∴△=m2-4≤0,解得-2≤m≤2.
∵p∨(?q)為假命題,
∴¬p為假命題,q為真命題,
∴-2≤m≤2.
則實數(shù)m的取值范圍是[-2,2],
故答案為:[-2,2].

點評 本題考查了一元二次不等式的解集與判別式的關(guān)系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)直線l:y=k(x+1)與橢圓x2+4y2=a2(a>0)相交于A、B兩個不同的點,與x軸相交于點C,記O為坐標原點.
(I)證明:a2>$\frac{4{k}^{2}}{1+{k}^{2}}$
(Ⅱ)若$\overrightarrow{AC}$=2$\overrightarrow{CB}$,求△OAB的面積取得最大值時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.6名翻譯人員中,A,B勝任英語翻譯,C,D,E勝任韓語翻譯,F(xiàn)兩種都勝任,現(xiàn)需從中選出3人來,要求英語翻譯1人韓語翻譯2人
(Ⅰ)求F被選中的概率;
(Ⅱ)從選出的3人中隨機指派2人為正副隊長,求英語翻譯不當正隊長的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若α∥β,m?α,n?β,則m∥nB.若α∥β,m∥α,n∥β,則m∥n
C.若m⊥α,n⊥β,m⊥n,則α∥βD.若m∥α,m?β,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=(m-1)x2+3mx+3為偶函數(shù),則f(x)在區(qū)間(-4,2)上為( 。
A.增函數(shù)B.減函數(shù)C.先遞增再遞減D.先遞減再遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=-x2+1的單調(diào)遞增區(qū)間為( 。
A.(-∞,0]B.[0,+∞)C.(0,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將一張畫有直角坐標系的圖紙折疊一次,使得點A(0,2)與點B(4,0)重合.若此時點C(7,3)與點D(m,n)重合,則m+n的值為( 。
A.$\frac{34}{5}$B.$\frac{33}{5}$C.$\frac{32}{5}$D.$\frac{31}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知z為虛數(shù),且有|z|=$\sqrt{5}$,如果z2+2$\overline{z}$為實數(shù).
(1)求:復(fù)數(shù)z;
(2)若z恰為實系數(shù)一元二次方程ax2+bx+c=0的根,試求出此方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.
(I)若N為AC的中點,△BAN的面積為$\sqrt{2}$,橢圓的離心率為$\frac{\sqrt{2}}{2}$.求橢圓E的方程;
(Ⅱ)F為橢圓E的右焦點,線段CF的延長線與線段AB交于點M,與橢圓E交于點P,求$\frac{|CM|}{|CP|}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案