11.如圖四面體P-ABC中,PA=PB=$\sqrt{13}$,平面PAB⊥平面ABC,∠ABC=90°AC=8,BC=6,則PC=7

分析 取AB中點E,連接PE,EC,證明PE⊥平面ABC,可得PE⊥CE,在直角△PEC中,可求PC的長

解答 解:取AB中點E,連接PE,EC,則
∵∠ABC=90°AC=8,BC=6,
∴AB=2$\sqrt{7}$,CE=$\sqrt{43}$,
∵PA=PB=$\sqrt{13}$,E是AB中點,
∴PE=$\sqrt{6}$,PE⊥AB,
∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,
∴PE⊥平面ABC,
∵CE?平面ABC,
∴PE⊥CE,
在直角△PEC中,PC=$\sqrt{6+43}$=7,
故答案為:7.

點評 本題考查面面垂直的性質(zhì),考查線面、線線垂直,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.P是邊長為2的正方形ABCD外一點,PD⊥面AC,O、E、F分別是AC、PA、PB中點.
(1)求證:面EFO∥面PDC;
(2)求OE到面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)是定義在[0,+∞]上,且以3π為周期的函數(shù),若當(dāng)x∈[0,3π]時,f(x)=$\left\{\begin{array}{l}{sinx,x∈[0,π]}\\{2sin(x-π),x∈(π,2π]}\\{4sin(x-2π),x∈(2π,3π]}\end{array}\right.$
(1)試寫出函數(shù)y=f(x)在(3(k-1)π,3kπ](k∈N*)上的解析式;
(2)求當(dāng)x∈[0,2015]時,方程|lgx|=f(x)的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.證明:Sn,S2n-Sn,S3n-S2n,…成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+x2=1(a>1)與拋物線C${\;}_{{2}_{\;}}$:x2=4y有相同焦點F1
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l1過橢圓C1的另一焦點F2,且與拋物線C2相切于第一象限的點A,設(shè)平行l(wèi)1的直線l交橢圓C1于B,C兩點,當(dāng)△OBC面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求由拋物線y=x2-x,直線x=-1及x軸圍成的圖形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.2lg10+(lg5+lg2)2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=ln(x+$\frac{a}{x}$-4)的值域為R,則實數(shù)a的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體的三視圖及尺寸如圖所示,則該幾何體的外接球半徑為$\frac{17}{4}$.

查看答案和解析>>

同步練習(xí)冊答案