17.已知圓C:x2+y2-8y+14=0,直線l過(guò)點(diǎn)(1,1)
(1)若直線l與圓C相切,求直線l的方程;
(2)當(dāng)l與圓C交于不同的兩點(diǎn)A,B,且|AB|=2時(shí),求直線l的方程.

分析 (1)確定圓心與半徑,利用直線l與圓C相切,分類(lèi)討論,即可求直線l的方程;
(2)由${d^2}+{1^2}={(\sqrt{2})^2}$,得d=1,分類(lèi)討論,即可求出直線l的方程.

解答 解:(1)圓C:x2+y2-8y+14=0,配方,得x2+(y-4)2=2,
圓心C(0,4),半徑$r=\sqrt{2}$,
①當(dāng)直線l的斜率不存在時(shí),l:x=1,此時(shí)l不與圓相切.    2分
②若直線l的斜率,設(shè)l:y-1=k(x-1),由$d=\frac{{|{3+k}|}}{{\sqrt{1+{k^2}}}}=\sqrt{2}$得k=7或-1,(4分)
所以直線方程為7x-y-6=0或x+y-2=0(6分)
(2)由${d^2}+{1^2}={(\sqrt{2})^2}$,得d=1,
①若當(dāng)直線l的斜率不存在時(shí),l:x=1,滿足題意      (8分)
②若直線l的斜率存在,設(shè)l:y-1=k(x-1)由${(\frac{{|{3+k}|}}{{\sqrt{1+{k^2}}}})^2}+1=2$
得$k=-\frac{4}{3}$,此時(shí)l:4x+3y-7=0x=1(10分)
綜上所述l方程為x=1或4x+3y-7=0(12分)

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的判斷,考查分類(lèi)討論的數(shù)學(xué)思想,解題時(shí)要注意點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)a為實(shí)數(shù),給出命題p:關(guān)于x的不等式($\frac{1}{2}$)|x-1|≥a的解集為Ф,命題q:函數(shù)f(x)=$\sqrt{a{x}^{2}+ax+2}$的定義域?yàn)镽,若命題“p∨q”為真,“p∧q為假”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式x2-ax+1>0對(duì)?x∈R恒成立,若p且q為假,¬p為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)中既是奇函數(shù),又是其定義域上的增函數(shù)的是(  )
A.y=|x|B.y=lnxC.y=x${\;}^{\frac{1}{3}}$D.y=x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知集合,B={x|x2-(a+2)x+2a=0},a∈R,A={x|a-2<x<a+2}
(Ⅰ)若a=0,求A∪B
(Ⅱ)若∁RA∩B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若等軸雙曲線經(jīng)過(guò)點(diǎn)M(1,2),則此雙曲線的半焦距為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在黨的群眾教育路線總結(jié)階段,一督導(dǎo)組從某單位隨機(jī)抽調(diào)25名員工,讓他們對(duì)本單位的各項(xiàng)開(kāi)展工作進(jìn)行打分評(píng)價(jià),現(xiàn)獲得如下的數(shù)據(jù):70,82,81,76,84,80,77,77,65,85,69,83,71,76,89,74,73,83,78,82,72,74,86,79,76,根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
(1)根據(jù)上述數(shù)據(jù)完成樣本的頻率分布表;
(2)根據(jù)(1)頻率分布表,完成樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,以頻率作為概率,求在該單位中任取6名員工的打分,他們的打分在(75,85]內(nèi)的人員數(shù)X的數(shù)學(xué)期望.
 分組 頻數(shù) 頻率
[65,70]  
 (70,75]  
 (75,80]  
 (80,85]  
 (85,90]  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知關(guān)于x,y的不等式組$\left\{\begin{array}{l}0≤x≤2\\ x+y-2≥0\\ kx-y+2≥0\end{array}\right.$所表示的平面區(qū)域的面積為3,則實(shí)數(shù)k的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)數(shù)列{an}的首項(xiàng)a1=1,且2an+1=an+$\frac{1-n}{n(n+1)}$,則an=${2}^{2-n}-\frac{1}{n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案